A336062 Denominators of coefficients associated with the second virial coefficient for rigid spheres with imbedded point dipoles.
3, 75, 55125, 694575, 36018675, 2678348673, 5934977173125, 31414073315625, 7287392748056045625, 1197275761489443260625, 46668548892583246253625, 1437557979280466067633984375, 42189201565839765028388671875, 12773202666073647259994954296875, 16951256433371736928038065776171875
Offset: 1
Examples
1/3, 1/75, 29/55125, 11/694575, 13/36018675, 17/2678348673, 523/5934977173125, ...
References
- J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., 1964, pages 210-211.
Programs
-
Mathematica
Table[Denominator[4^k Sum[Binomial[2 j, j]/Binomial[2 k, k], {j, 0, k}]/((2 k)! (2 k - 1) (2 k + 1)^2)], {k, 20}] Table[Denominator[4^k Hypergeometric2F1[1, -k, 1/2 - k, 1/4]/((2 k)! (2 k - 1) (2 k + 1)^2)], {k, 20}]
-
PARI
a(n)={denominator(4^n*sum(j=0, n, binomial(2*j,j))/(binomial(2*n,n)*(2*n)!*(2*n-1)*(2*n+1)^2))} \\ Andrew Howroyd, Jul 07 2020
Formula
a(n) = denominator(1/(8 * Pi * (2*n)! * (2*n - 1)) * Integral_{w=0..2*Pi} Integral_{v=0..Pi} Integral_{u=0..Pi} (2 * cos(u) * cos(v) - sin(u) * sin(v) * cos(w))^(2 * n) * sin(u) * sin(v)).
a(n) = denominator(4^n * hypergeom([1, -n], [1/2 - n], 1/4)/((2 * n)! (2 * n - 1) (2 * n + 1)^2)).
a(n) = denominator(4^n*(Sum_{j=0..n} binomial(2*j,j))/(binomial(2*n,n)*(2*n)!*(2*n-1)*(2*n+1)^2)).