A327440 a(n) = floor(3*n/10).
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Julia
[div(3*n, 10) for n in 0:80] |> println
-
Mathematica
Table[Floor[3 n/10], {n, 0, 80}] LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3}, 80]
-
PARI
vector(80, n, n--; floor(3*n/10))
Formula
O.g.f.: x^4*(1 + x^3 + x^6)/((1 + x)*(1 - x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) = (x^4 + x^7 + x^10)/(1 - x - x^10 + x^11).
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10.
Comments