cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A319006 Sum of the next n positive integers repeated (A008619).

Original entry on oeis.org

1, 3, 8, 18, 34, 57, 89, 132, 187, 255, 338, 438, 556, 693, 851, 1032, 1237, 1467, 1724, 2010, 2326, 2673, 3053, 3468, 3919, 4407, 4934, 5502, 6112, 6765, 7463, 8208, 9001, 9843, 10736, 11682, 12682, 13737, 14849, 16020, 17251, 18543, 19898, 21318, 22804, 24357, 25979
Offset: 1

Views

Author

Bruno Berselli, Sep 07 2018

Keywords

Examples

			Next n positive integers repeated:       Sums:
1,  ......................................   1
1, 2,  ...................................   3
2, 3, 3,  ................................   8
4, 4, 5,  5,  ............................  18
6, 6, 7,  7,  8,  ........................  34
8, 9, 9, 10, 10, 11,  ....................  57, etc.
		

Crossrefs

Sum of the next n positive integers: A006003 (after 0).

Programs

  • Magma
    [Integers()! (n*(n^2+2)+(-(n mod 2))^(n*(n-1)/2))/4: n in [1..50]];
    
  • Maple
    a := n -> (n^3 + 2*n + (-(n mod 2))^binomial(n, 2))/4:
    seq(a(n), n=1..47); # Peter Luschny, Sep 09 2018
  • Mathematica
    Table[(2 n (n^2 + 2) + (1 - (-1)^n) (-1)^((n-1)/2))/8, {n, 1, 50}]
    Module[{nn=50,lst},lst=Flatten[Table[{n,n},{n,(nn(nn+1))/2}]];Total/@ TakeList[lst,Range[nn]]] (* Requires Mathematica version 11 or later *) (* or *) LinearRecurrence[{4,-7,8,-7,4,-1},{1,3,8,18,34,57},50] (* Harvey P. Dale, Jul 10 2021 *)
  • PARI
    Vec(x*(1 - x + 3*x^2 - x^3 + x^4)/((1 + x^2)*(1 - x)^4) + O(x^50)) \\ Colin Barker, Sep 10 2018

Formula

G.f.: x*(1 - x + 3*x^2 - x^3 + x^4)/((1 + x^2)*(1 - x)^4).
a(n) = -a(-n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 7*a(n-4) + 4*a(n-5) - a(n-6).
a(n) = (2*n*(n^2 + 2) + (1 - (-1)^n)*(-1)^((n-1)/2))/8.
a(n) = A319007(n) + n.
a(n) = (n^3 + 2*n + Chi(n))/4 where Chi(n) = A101455(n). - Peter Luschny, Sep 09 2018
Showing 1-1 of 1 results.