cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A319007 Sum of the next n nonnegative integers repeated (A004526).

Original entry on oeis.org

0, 1, 5, 14, 29, 51, 82, 124, 178, 245, 327, 426, 543, 679, 836, 1016, 1220, 1449, 1705, 1990, 2305, 2651, 3030, 3444, 3894, 4381, 4907, 5474, 6083, 6735, 7432, 8176, 8968, 9809, 10701, 11646, 12645, 13699, 14810, 15980, 17210, 18501, 19855, 21274, 22759, 24311, 25932
Offset: 1

Views

Author

Bruno Berselli, Sep 07 2018

Keywords

Comments

After 29, all terms are composite.

Examples

			Next n nonnegative integers repeated:    Sums:
0,  ......................................   0
0, 1,  ...................................   1
1, 2, 2,  ................................   5
3, 3, 4, 4,  .............................  14
5, 5, 6, 6, 7,  ..........................  29
7, 8, 8, 9, 9, 10,  ......................  51, etc.
		

Crossrefs

Sum of the next n nonnegative integers: A027480.

Programs

  • Magma
    [Integers()! (n*(n^2-2)+(-(n mod 2))^(n*(n-1)/2))/4: n in [1..50]];
    
  • Maple
    a := n -> (n^3 - 2*n + (-(n mod 2))^binomial(n,2))/4;
    seq(a(n), n=1..47); # Peter Luschny, Sep 09 2018
  • Mathematica
    Table[(2 n (n^2 - 2) + (1 - (-1)^n) (-1)^((n-1)/2))/8, {n, 1, 50}]
  • PARI
    concat(0, Vec(x^2*(1 + x + x^2)/((1 + x^2)*(1 - x)^4) + O(x^50))) \\ Colin Barker, Sep 10 2018

Formula

G.f.: x^2*(1 + x + x^2)/((1 + x^2)*(1 - x)^4).
a(n) = -a(-n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 7*a(n-4) + 4*a(n-5) - a(n-6).
a(n) = (2*n*(n^2 - 2) + (1 - (-1)^n)*(-1)^((n-1)/2))/8.
a(n) = A319006(n) - n.
a(n) = (n^3 - 2*n + Chi(n))/4 where Chi(n) = A101455(n). - Peter Luschny, Sep 09 2018
Showing 1-1 of 1 results.