cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000096 a(n) = n*(n+3)/2.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484, 1539, 1595, 1652, 1710, 1769
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the maximal number of pieces that can be obtained by cutting an annulus with n cuts. See illustration. - Robert G. Wilson v
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
n(n-3)/2 (n >= 4) is the degree of the third-smallest irreducible presentation of the symmetric group S_n (cf. James and Kerber, Appendix 1).
a(n) is also the multiplicity of the eigenvalue (-2) of the triangle graph Delta(n+1). (See p. 19 in Biggs.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Nov 25 2001
For n > 3, a(n-3) = dimension of the traveling salesman polytope T(n). - Benoit Cloitre, Aug 18 2002
Also counts quasi-dominoes (quasi-2-ominoes) on an n X n board. Cf. A094170-A094172. - Jon Wild, May 07 2004
Coefficient of x^2 in (1 + x + 2*x^2)^n. - Michael Somos, May 26 2004
a(n) is the number of "prime" n-dimensional polyominoes. A "prime" n-polyomino cannot be formed by connecting any other n-polyominoes except for the n-monomino and the n-monomino is not prime. E.g., for n=1, the 1-monomino is the line of length 1 and the only "prime" 1-polyominoes are the lines of length 2 and 3. This refers to "free" n-dimensional polyominoes, i.e., that can be rotated along any axis. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
Solutions to the quadratic equation q(m, r) = (-3 +- sqrt(9 + 8(m - r))) / 2, where m - r is included in a(n). Let t(m) = the triangular number (A000217) less than some number k and r = k - t(m). If k is neither prime nor a power of two and m - r is included in A000096, then m - q(m, r) will produce a value that shares a divisor with k. - Andrew S. Plewe, Jun 18 2005
Sum_{k=2..n+1} 4/(k*(k+1)*(k-1)) = ((n+3)*n)/((n+2)*(n+1)). Numerator(Sum_{k=2..n+1} 4/(k*(k+1)*(k-1))) = (n+3)*n/2. - Alexander Adamchuk, Apr 11 2006
Number of rooted trees with n+3 nodes of valence 1, no nodes of valence 2 and exactly two other nodes. I.e., number of planted trees with n+2 leaves and exactly two branch points. - Theo Johnson-Freyd (theojf(AT)berkeley.edu), Jun 10 2007
If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-2)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
For n >= 1, a(n) is the number of distinct shuffles of the identity permutation on n+1 letters with the identity permutation on 2 letters (12). - Camillia Smith Barnes, Oct 04 2008
If s(n) is a sequence defined as s(1) = x, s(n) = kn + s(n-1) + p for n > 1, then s(n) = a(n-1)*k + (n-1)*p + x. - Gary Detlefs, Mar 04 2010
The only primes are a(1) = 2 and a(2) = 5. - Reinhard Zumkeller, Jul 18 2011
a(n) = m such that the (m+1)-th triangular number minus the m-th triangular number is the (n+1)-th triangular number: (m+1)(m+2)/2 - m(m+1)/2 = (n+1)(n+2)/2. - Zak Seidov, Jan 22 2012
For n >= 1, number of different values that Sum_{k=1..n} c(k)*k can take where the c(k) are 0 or 1. - Joerg Arndt, Jun 24 2012
On an n X n chessboard (n >= 2), the number of possible checkmate positions in the case of king and rook versus a lone king is 0, 16, 40, 72, 112, 160, 216, 280, 352, ..., which is 8*a(n-2). For a 4 X 4 board the number is 40. The number of positions possible was counted including all mirror images and rotations for all four sides of the board. - Jose Abutal, Nov 19 2013
If k = a(i-1) or k = a(i+1) and n = k + a(i), then C(n, k-1), C(n, k), C(n, k+1) are three consecutive binomial coefficients in arithmetic progression and these are all the solutions. There are no four consecutive binomial coefficients in arithmetic progression. - Michael Somos, Nov 11 2015
a(n-1) is also the number of independent components of a symmetric traceless tensor of rank 2 and dimension n >= 1. - Wolfdieter Lang, Dec 10 2015
Numbers k such that 8k + 9 is a square. - Juri-Stepan Gerasimov, Apr 05 2016
Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See the Wojnar et al. link] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi*g_D(N) where chi = (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). Then a(n) are the negated coefficients of the next to the highest order term in the polynomials N^chi*g_D(N), starting at D=3. - Gregory Gerard Wojnar, Jul 19 2017
For n >= 2, a(n) is the number of summations required to solve the linear regression of n variables (n-1 independent variables and 1 dependent variable). - Felipe Pedraza-Oropeza, Dec 07 2017
For n >= 2, a(n) is the number of sums required to solve the linear regression of n variables: 5 for two variables (sums of X, Y, X^2, Y^2, X*Y), 9 for 3 variables (sums of X1, X2, Y1, X1^2, X1*X2, X1*Y, X2^2, X2*Y, Y^2), and so on. - Felipe Pedraza-Oropeza, Jan 11 2018
a(n) is the area of a triangle with vertices at (n, n+1), ((n+1)*(n+2)/2, (n+2)*(n+3)/2), ((n+2)^2, (n+3)^2). - J. M. Bergot, Jan 25 2018
Number of terms less than 10^k: 1, 4, 13, 44, 140, 446, 1413, 4471, 14141, 44720, 141420, 447213, ... - Muniru A Asiru, Jan 25 2018
a(n) is also the number of irredundant sets in the (n+1)-path complement graph for n > 2. - Eric W. Weisstein, Apr 11 2018
a(n) is also the largest number k such that the largest Dyck path of the symmetric representation of sigma(k) has exactly n peaks, n >= 1. (Cf. A237593.) - Omar E. Pol, Sep 04 2018
For n > 0, a(n) is the number of facets of associahedra. Cf. A033282 and A126216 and their refinements A111785 and A133437 for related combinatorial and analytic constructs. See p. 40 of Hanson and Sha for a relation to projective spaces and string theory. - Tom Copeland, Jan 03 2021
For n > 0, a(n) is the number of bipartite graphs with 2n or 2n+1 edges, no isolated vertices, and a stable set of cardinality 2. - Christian Barrientos, Jun 13 2022
For n >= 2, a(n-2) is the number of permutations in S_n which are the product of two different transpositions of adjacent points. - Zbigniew Wojciechowski, Mar 31 2023
a(n) represents the optimal stop-number to achieve the highest running score for the Greedy Pig game with an (n-1)-sided die with a loss on a 1. The total at which one should stop is a(s-1), e.g. for a 6-sided die, one should pass the die at 20. See Sparks and Haran. - Nicholas Stefan Georgescu, Jun 09 2024

Examples

			G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
  • G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
  • D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Similar sequences are listed in A316466.

Programs

Formula

G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
Connection with triangular numbers: a(n) = A000217(n+1) - 1.
a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - Jon Perry, Jul 23 2003
a(-3-n) = a(n). - Michael Somos, May 26 2004
2*a(n) = A008778(n) - A105163(n). - Creighton Dement, Apr 15 2005
a(n) = C(3+n, 2) - C(3+n, 1). - Zerinvary Lajos, Dec 09 2005
a(n) = A067550(n+1) / A067550(n). - Alexander Adamchuk, May 20 2006
a(n) = A126890(n,1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2008
Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
For n >= 0, a(n+2) = b(n+1) - b(n), where b(n) is the sequence A005586. - K.V.Iyer, Apr 27 2009
A002262(a(n)) = n. - Reinhard Zumkeller, May 20 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=1..n} (k+1)!/k!. - Gary Detlefs, Aug 03 2010
a(n) = n(n+1)/2 + n = A000217(n) + n. - Zak Seidov, Jan 22 2012
E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - Peter Bala, Mar 14 2012
a(n) = binomial(n+3, 2) - (n+3). - Robert G. Wilson v, Mar 15 2012
a(n) = A181971(n+1, 2) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = A214292(n+2, 1). - Reinhard Zumkeller, Jul 12 2012
G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012
A023532(a(n)) = 0. - Reinhard Zumkeller, Dec 04 2012
a(n) = A014132(n,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 2n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=2..n+1} i. - Wesley Ivan Hurt, Jun 28 2013
Sum_{n>0} 1/a(n) = 11/9. - Enrique Pérez Herrero, Nov 26 2013
a(n) = Sum_{i=1..n} (n - i + 2). - Wesley Ivan Hurt, Mar 31 2014
A023531(a(n)) = 1. - Reinhard Zumkeller, Feb 14 2015
For n > 0: a(n) = A101881(2*n-1). - Reinhard Zumkeller, Feb 20 2015
a(n) + a(n-1) = A008865(n+1) for all n in Z. - Michael Somos, Nov 11 2015
a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = (n+1)^2 - A000124(n). - Anton Zakharov, Jun 29 2016
Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = 2*A000290(n+3) - 3*A000217(n+3). - J. M. Bergot, Apr 04 2018
a(n) = Stirling2(n+2, n+1) - 1. - Peter Luschny, Jan 05 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 3.
Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
Product_{n>=0} a(4*n+1)*a(4*n+4)/(a(4*n+2)*a(4*n+3)) = Pi/6. - Michael Jodl, Apr 05 2025

A045943 Triangular matchstick numbers: a(n) = 3*n*(n+1)/2.

Original entry on oeis.org

0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, 630, 693, 759, 828, 900, 975, 1053, 1134, 1218, 1305, 1395, 1488, 1584, 1683, 1785, 1890, 1998, 2109, 2223, 2340, 2460, 2583, 2709, 2838, 2970, 3105, 3243, 3384, 3528
Offset: 0

Views

Author

Keywords

Comments

Also, 3 times triangular numbers, a(n) = 3*A000217(n).
In the 24-bit RGB color cube, the number of color-lattice-points in r+g+b = n planes at n < 256 equals the triangular numbers. For n = 256, ..., 765 the number of legitimate color partitions is less than A000217(n) because {r,g,b} components cannot exceed 255. For n = 256, ..., 511, the number of non-color partitions are computable with A045943(n-255), while for n = 512, ..., 765, the number of color points in r+g+b planes equals A000217(765-n). - Labos Elemer, Jun 20 2005
If a 3-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-3) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
a(n) is also the smallest number that may be written both as the sum of n-1 consecutive positive integers and n consecutive positive integers. - Claudio Meller, Oct 08 2010
For n >= 3, a(n) equals 4^(2+n)*Pi^(1 - n) times the coefficient of zeta(3) in the following integral with upper bound Pi/4 and lower bound 0: int x^(n+1) tan x dx. - John M. Campbell, Jul 17 2011
The difference a(n)-a(n-1) = 3*n, for n >= 1. - Stephen Balaban, Jul 25 2011 [Comment clarified by N. J. A. Sloane, Aug 01 2024]
Sequence found by reading the line from 0, in the direction 0, 3, ..., and the same line from 0, in the direction 0, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. This is one of the orthogonal axes of the spiral; the other is A032528. - Omar E. Pol, Sep 08 2011
A005449(a(n)) = A000332(3n + 3) = C(3n + 3, 4), a second pentagonal number of triangular matchstick number index number. Additionally, a(n) - 2n is a pentagonal number (A000326). - Raphie Frank, Dec 31 2012
Sum of the numbers from n to 2n. - Wesley Ivan Hurt, Nov 24 2015
Number of orbits of Aut(Z^7) as function of the infinity norm (n+1) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 5376 or 17920 or 20160. - Philippe A.J.G. Chevalier, Dec 28 2015
Also the number of 4-cycles in the (n+4)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Number of terms less than 10^k, k=0,1,2,3,...: 1, 3, 8, 26, 82, 258, 816, 2582, 8165, 25820, 81650, 258199, 816497, 2581989, 8164966, ... - Muniru A Asiru, Jan 24 2018
Numbers of the form 3*m*(2*m + 1) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Partial sums of A008585. - Omar E. Pol, Jun 20 2018
Column 1 of A273464. (Number of ways to select a unit lozenge inside an isosceles triangle of side length n; all vertices on a hexagonal lattice.) - R. J. Mathar, Jul 10 2019
Total number of pips in the n-th suit of a double-n domino set. - Ivan N. Ianakiev, Aug 23 2020

Examples

			From _Stephen Balaban_, Jul 25 2011: (Start)
T(n), the triangular numbers = number of nodes,
a(n-1) = number of edges in the T(n) graph:
       o    (T(1) = 1, a(0) = 0)
       o
      / \   (T(2) = 3, a(1) = 3)
     o - o
       o
      / \
     o - o  (T(3) = 6, a(2) = 9)
    / \ / \
   o - o - o
... [Corrected by _N. J. A. Sloane_, Aug 01 2024] (End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 543.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
A diagonal of A010027.
Orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A115067, A008585, A005843, A001477, A000217.
Cf. A027480 (partial sums).
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
This sequence: Sum_{k = n..2*n} k.
Cf. A304993: Sum_{k = n..2*n} k*(k+1)/2.
Cf. A050409: Sum_{k = n..2*n} k^2.
Similar sequences are listed in A316466.

Programs

Formula

a(n) is the sum of n+1 integers starting from n, i.e., 1+2, 2+3+4, 3+4+5+6, 4+5+6+7+8, etc. - Jon Perry, Jan 15 2004
a(n) = A126890(n+1,n-1) for n>1. - Reinhard Zumkeller, Dec 30 2006
a(n) + A145919(3*n+3) = 0. - Matthew Vandermast, Oct 28 2008
a(n) = A000217(2*n) - A000217(n-1); A179213(n) <= a(n). - Reinhard Zumkeller, Jul 05 2010
a(n) = a(n-1)+3*n, n>0. - Vincenzo Librandi, Nov 18 2010
G.f.: 3*x/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A005448(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A001477(n)+A000290(n)+A000217(n). - J. M. Bergot, Dec 08 2012
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2. - Wesley Ivan Hurt, Nov 24 2015
a(n) = A027480(n)-A027480(n-1). - Peter M. Chema, Jan 18 2017.
2*a(n)+1 = A003215(n). - Miquel Cerda, Jan 22 2018
a(n) = T(2*n) - T(n-1), where T(n) = A000217(n). In general, T(k)*T(n) = Sum_{i=0..k-1} (-1)^i*T((k-i)*(n-i)). - Charlie Marion, Dec 06 2020
E.g.f.: 3*exp(x)*x*(2 + x)/2. - Stefano Spezia, May 19 2021
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/3. (End)
Product_{n>=1} (1 - 1/a(n)) = -(3/(2*Pi))*cos(sqrt(11/3)*Pi/2). - Amiram Eldar, Feb 21 2023

A033429 a(n) = 5*n^2.

Original entry on oeis.org

0, 5, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125, 1280, 1445, 1620, 1805, 2000, 2205, 2420, 2645, 2880, 3125, 3380, 3645, 3920, 4205, 4500, 4805, 5120, 5445, 5780, 6125, 6480, 6845, 7220, 7605, 8000, 8405, 8820, 9245, 9680, 10125, 10580, 11045, 11520, 12005, 12500
Offset: 0

Views

Author

Keywords

Comments

Number of edges of the complete bipartite graph of order 6n, K_n,5n. - Roberto E. Martinez II, Jan 07 2002
Number of edges of the complete tripartite graph of order 4n, K_n,n,2n. - Roberto E. Martinez II, Jan 07 2002
a(n+1)-a(n) : 5, 15, 25, 35, 45, ... (see A017329). - Philippe Deléham, Dec 08 2011
From Larry J Zimmermann, Feb 21 2013: (Start)
The sum of the areas of 2 squares that equals the area of a rectangle with whole number sides using the formula x^2 + y^2 = (x+y+sqrt(2*x*y))(x+y-sqrt(2*x*y)), where the substitution y=2*x obtains the whole number sides of the rectangle. So x^2+(2*x)^2=5x(x).
x squares sum rectangle (l,w) area
1 1,4 5 5,1 5
2 4,16 20 10,2 20 (End)

Crossrefs

Central column of A055096.
Cf. A000290.
Cf. A185019.
Similar sequences are listed in A316466.

Programs

  • Mathematica
    5*Range[50]^2 (* Alonso del Arte, May 23 2012 *)
  • PARI
    a(n)=5*n^2

Formula

a(n) = 5*A000290(n). - Omar E. Pol, Dec 11 2008
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: 5*x*(1+x)/(1-x)^3.
a(n) = 4*A000217(n) + A000567(n). (End)
a(n) = a(n-1)+5*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
a(n) = A131242(10*n+4). - Philippe Deléham, Mar 27 2013
a(n) = a(n-1) + 10*n - 5, with a(0)=0. - Jean-Bernard François, Oct 04 2013
a(n) = A001105(n) + A033428(n). - Altug Alkan, Sep 28 2015
E.g.f.: 5*x*(x+1)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = Sum_{i = 2..6} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/30.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/60.
Product_{n>=1} (1 + 1/a(n)) = sqrt(5)*sinh(Pi/sqrt(5))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(5)*sin(Pi/sqrt(5))/Pi. (End)

Extensions

Better description from N. J. A. Sloane, May 15 1998

A049451 Twice second pentagonal numbers.

Original entry on oeis.org

0, 4, 14, 30, 52, 80, 114, 154, 200, 252, 310, 374, 444, 520, 602, 690, 784, 884, 990, 1102, 1220, 1344, 1474, 1610, 1752, 1900, 2054, 2214, 2380, 2552, 2730, 2914, 3104, 3300, 3502, 3710, 3924, 4144, 4370, 4602, 4840, 5084, 5334, 5590, 5852, 6120, 6394, 6674, 6960, 7252, 7550, 7854
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the sequence found by reading the line from 0 in the direction 0,4,... . The spiral begins:
.
52
. \
33--32--31--30 51
/ . \ \
34 16--15--14 29 50
/ / . \ \ \
35 17 5---4 13 28 49
/ / / . \ \ \ \
36 18 6 0 3 12 27 48
/ / / / / / / /
37 19 7 1---2 11 26 47
\ \ \ / / /
38 20 8---9--10 25 46
\ \ / /
39 21--22--23--24 45
\ /
40--41--42--43--44
(End)
Number of edges in the join of the complete bipartite graph of order 2n and the cycle graph of order n, K_n,n * C_n. - Roberto E. Martinez II, Jan 07 2002
The average of the first n elements starting from a(1) is equal to (n+1)^2. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of (n-4)-subsets of X having either one element or two elements in common with Y. - Milan Janjic, Dec 28 2007
With offset 1: the maximum possible sum of numbers in an N x N standard Minesweeper grid. - Dmitry Kamenetsky, Dec 14 2008
a(n) = A001399(6*n-2), number of partitions of 6*n-2 into parts < 4. For example a(2)=14 where the partitions of 6*2-2=10 into parts < 4 are [1,1,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,3], [1,1,1,1,1,1,2,2], [1,1,1,1,1,2,3], [1,1,1,1,2,2,2], [1,1,1,1,3,3], [1,1,1,2,2,3], [1,1,2,2,2,2], [1,1,2,3,3], [1,2,2,2,3], [2,2,2,2,2], [1,3,3,3], [2,2,3,3]. - Adi Dani, Jun 07 2011
A003056 is the following array A read by antidiagonals:
0, 1, 2, 3, 4, 5, ...
1, 2, 3, 4, 5, 6, ...
2, 3, 4, 5, 6, 7, ...
3, 4, 5, 6, 7, 8, ...
4, 5, 6, 7, 8, 9, ...
5, 6, 7, 8, 9, 10, ...
and a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
a(n)*Pi is the total length of 3 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A016957. The spiral length ratio rounded down [floor(L(n)/L(1))] is A001651. See illustration in links. - Kival Ngaokrajang, Dec 27 2013
Partial sums give A114364. - Leo Tavares, Feb 25 2022
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+1; {2, 2n-1, 1, 4, 1, 2n-1, 2, 18n+2}]. - Magus K. Chu, Oct 13 2022

Examples

			From _Dmitry Kamenetsky_, Dec 14 2008, with slight rewording by Raymond Martineau (mart0258(AT)yahoo.com), Dec 16 2008: (Start)
For an N x N Minesweeper grid the highest sum of numbers is (N-1)(3*N-2). This is achieved by filling every second row with mines (shown as 'X'). For example, when N=5 the best grids are:
.
  X X X X X
  4 6 6 6 4
  X X X X X
  4 6 6 6 4
  X X X X X
.
  and
.
  2 3 3 3 2
  X X X X X
  4 6 6 6 4
  X X X X X
  2 3 3 3 2
.
each giving a total of 52. (End)
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 12.

Crossrefs

Similar sequences are listed in A316466.

Programs

Formula

a(n) = n*(3*n+1).
G.f.: 2*x*(2+x)/(1-x)^3.
Sum_{i=1..n} a(i) = A045991(n+1). - Gary W. Adamson, Dec 20 2006
a(n) = 2*A005449(n). - Omar E. Pol, Dec 18 2008
a(n) = a(n-1) + 6*n -2, n > 0. - Vincenzo Librandi, Aug 06 2010
a(n) = A100104(n+1) - A100104(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 14. - Philippe Deléham, Mar 26 2013
a(n) = A174709(6*n+3). - Philippe Deléham, Mar 26 2013
a(n) = (24/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Bruno Berselli, Jun 04 2013 - after the similar formula of Vladimir Kruchinin in A002411
a(n) = A002061(n+1) + A056220(n). - Bruce J. Nicholson, Sep 21 2017
a(n) = Sum_{i = 2..5} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
E.g.f.: x*(4 + 3*x)*exp(x). - G. C. Greubel, Sep 01 2019
a(n) = A003215(n) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi/(2*sqrt(3)) - 3*log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(3) + 2*log(2) - 3. (End)
a(n) = A001105(n) + A002378(n). - Torlach Rush, Jul 11 2022

A195320 7 times hexagonal numbers: a(n) = 7*n*(2*n-1).

Original entry on oeis.org

0, 7, 42, 105, 196, 315, 462, 637, 840, 1071, 1330, 1617, 1932, 2275, 2646, 3045, 3472, 3927, 4410, 4921, 5460, 6027, 6622, 7245, 7896, 8575, 9282, 10017, 10780, 11571, 12390, 13237, 14112, 15015, 15946, 16905, 17892, 18907, 19950, 21021, 22120, 23247, 24402, 25585
Offset: 0

Views

Author

Omar E. Pol, Sep 18 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277.
Also sequence found by reading the same line (mentioned above) in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 7*n = 7*A000384(n).
G.f.: -7*x*(1+3*x)/(x-1)^3. - R. J. Mathar, Sep 27 2011
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 7*exp(x)*x*(2*x + 1).
a(n) = A316466(n) - n = A024966(2*n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A152744 7 times pentagonal numbers: a(n) = 7*n*(3*n-1)/2.

Original entry on oeis.org

0, 7, 35, 84, 154, 245, 357, 490, 644, 819, 1015, 1232, 1470, 1729, 2009, 2310, 2632, 2975, 3339, 3724, 4130, 4557, 5005, 5474, 5964, 6475, 7007, 7560, 8134, 8729, 9345, 9982, 10640, 11319, 12019, 12740, 13482, 14245, 15029, 15834, 16660, 17507, 18375, 19264
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Crossrefs

Similar sequences are listed in A316466.

Programs

  • Magma
    [7*n*(3*n-1)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    Table[7n (3n-1)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,35},50] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n)=7*n*(3*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

a(n) = (21*n^2 - 7*n)/2 = A000326(n)*7.
a(n) = a(n-1) + 21*n - 14 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
G.f.: 7*x*(1+2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 08 2013
a(n) = Sum_{i = 2..8} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
E.g.f.: 7*x*(2+3*x)/2. - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = (9*log(3) - sqrt(3)*Pi)/21.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi*sqrt(3) - 6*log(2))/21. (End)

A152994 Nine times hexagonal numbers: a(n) = 9*n*(2*n-1).

Original entry on oeis.org

0, 9, 54, 135, 252, 405, 594, 819, 1080, 1377, 1710, 2079, 2484, 2925, 3402, 3915, 4464, 5049, 5670, 6327, 7020, 7749, 8514, 9315, 10152, 11025, 11934, 12879, 13860, 14877, 15930, 17019, 18144, 19305, 20502, 21735, 23004, 24309, 25650, 27027, 28440, 29889, 31374
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9,..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Sep 18 2011

Crossrefs

Similar sequences are listed in A316466.

Programs

Formula

a(n) = 18*n^2 - 9*n = A000384(n)*9 = A094159(n)*3.
a(n) = a(n-1) + 36*n - 27 for n>0, a(0)=0. - Vincenzo Librandi, Dec 15 2010
a(n) = Sum_{i = 2..10} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From G. C. Greubel, Sep 01 2019: (Start)
G.f.: 9*x*(1+3*x)/(1-x)^3.
E.g.f.: 9*x*(1+2*x)*exp(x). (End)
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*log(2)/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi - 2*log(2))/18. (End)

A139608 a(n) = 28*n + 8.

Original entry on oeis.org

8, 36, 64, 92, 120, 148, 176, 204, 232, 260, 288, 316, 344, 372, 400, 428, 456, 484, 512, 540, 568, 596, 624, 652, 680, 708, 736, 764, 792, 820, 848, 876, 904, 932, 960, 988, 1016, 1044, 1072, 1100, 1128, 1156, 1184, 1212, 1240, 1268, 1296, 1324, 1352, 1380
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 8th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = A057145(n+2,8).
a(n) = 2*a(n-1) - a(n-2); a(0)=8, a(1)=36. - Harvey P. Dale, Dec 14 2012
G.f.: 4*(2+5*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 16 2024: (Start)
E.g.f.: 4*exp(x)*(2 + 7*x).
a(n) = 4*A017005(n) = A135628(n) + 8 = A316466(n+1) - A316466(n). (End)

A167469 a(n) = 3*n*(5*n-1)/2.

Original entry on oeis.org

6, 27, 63, 114, 180, 261, 357, 468, 594, 735, 891, 1062, 1248, 1449, 1665, 1896, 2142, 2403, 2679, 2970, 3276, 3597, 3933, 4284, 4650, 5031, 5427, 5838, 6264, 6705, 7161, 7632, 8118, 8619, 9135, 9666, 10212, 10773, 11349, 11940, 12546, 13167, 13803, 14454
Offset: 1

Views

Author

A.K. Devaraj, Nov 05 2009

Keywords

Comments

This represents the nontrivial imaginary part of the decomposition of the trivariate rational polynomial described in A167467.
Old name was: 3*A005476(n).
Sum of the numbers from n to 4*n-1 for n>=1. - Wesley Ivan Hurt, May 08 2016

Crossrefs

Similar sequences are listed in A316466.

Programs

Formula

G.f.: 3*x*(2+3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
a(n) = Sum_{i=n..4*n-1} i. - Wesley Ivan Hurt, May 08 2016
E.g.f.: 3*x*(4 + 5*x)*exp(x)/2. - Ilya Gutkovskiy, May 14 2016
a(n) = Sum_{i = 2..7} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018

Extensions

a(1) corrected, definition simplified, sequence extended by R. J. Mathar, Nov 12 2009
Name changed by Wesley Ivan Hurt, May 08 2016

A319285 Number of series-reduced locally stable rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 69, 619, 7739, 109855, 1898230
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally stable if no branch is a submultiset of any other branch of the same root.

Examples

			The a(3) = 9 trees:
  (1(11))
   (111)
  (1(12))
  (2(11))
   (112)
  (1(23))
  (2(13))
  (3(12))
   (123)
Examples of rooted trees that are not locally stable are ((11)(111)), ((11)(112)), ((12)(112)), ((12)(123)).
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    stableQ[u_]:=Apply[And,Outer[#1==#2||!submultisetQ[#1,#2]&&!submultisetQ[#2,#1]&,u,u,1],{0,1}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,{m},Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],stableQ]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,5}]
Showing 1-10 of 10 results.