cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Leo Tavares

Leo Tavares's wiki page.

Leo Tavares has authored 2 sequences.

A361692 a(n) = 17*n - 1.

Original entry on oeis.org

16, 33, 50, 67, 84, 101, 118, 135, 152, 169, 186, 203, 220, 237, 254, 271, 288, 305, 322, 339, 356, 373, 390, 407, 424, 441, 458, 475, 492, 509, 526, 543, 560, 577, 594, 611, 628, 645, 662, 679, 696, 713, 730, 747, 764, 781, 798, 815, 832, 849, 866, 883, 900, 917, 934, 951, 968, 985, 1002, 1019
Offset: 1

Author

Leo Tavares, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    17*Range[100] - 1 (* Paolo Xausa, Aug 30 2024 *)
    LinearRecurrence[{2,-1},{16,33},90] (* Harvey P. Dale, Jun 03 2025 *)

Formula

a(n) = 17*n - 1 = A008599(n) - 1.
a(n) = 2*A008590(n) + n - 1.
a(n) = A008590(n) + A017257(n-1).
From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: x*(16 + x)/(x - 1)^2.
E.g.f.: exp(x)*(17*x - 1) + 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A358053 a(n) = 14*n - 1.

Original entry on oeis.org

13, 27, 41, 55, 69, 83, 97, 111, 125, 139, 153, 167, 181, 195, 209, 223, 237, 251, 265, 279, 293, 307, 321, 335, 349, 363, 377, 391, 405, 419, 433, 447, 461, 475, 489, 503, 517, 531, 545, 559, 573, 587, 601, 615, 629, 643, 657, 671, 685, 699, 713, 727, 741, 755, 769, 783, 797
Offset: 1

Author

Leo Tavares, Oct 27 2022

Keywords

Comments

This sequence can be illustrated by a star outline with a central row of counters.
Subsequence of primes is A045473. - Bernard Schott, Jan 25 2023

Programs

  • Mathematica
    14*Range[100] - 1 (* Paolo Xausa, Oct 04 2024 *)

Formula

a(n) = 14*n - 1.
a(n) = A003154(n+1) - A202804(n-1).
a(n) = A003154(n+1) - 2*A045944(n-1).
From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: x*(13 + x)/(x - 1)^2.
E.g.f.: exp(x)*(14*x - 1) + 1.
a(n) = A017053(2*n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)