A361692 a(n) = 17*n - 1.
16, 33, 50, 67, 84, 101, 118, 135, 152, 169, 186, 203, 220, 237, 254, 271, 288, 305, 322, 339, 356, 373, 390, 407, 424, 441, 458, 475, 492, 509, 526, 543, 560, 577, 594, 611, 628, 645, 662, 679, 696, 713, 730, 747, 764, 781, 798, 815, 832, 849, 866, 883, 900, 917, 934, 951, 968, 985, 1002, 1019
Offset: 1
Links
- Leo Tavares, Illustration: Double Diamonds.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
17*Range[100] - 1 (* Paolo Xausa, Aug 30 2024 *) LinearRecurrence[{2,-1},{16,33},90] (* Harvey P. Dale, Jun 03 2025 *)
Formula
a(n) = 17*n - 1 = A008599(n) - 1.
a(n) = 2*A008590(n) + n - 1.
From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: x*(16 + x)/(x - 1)^2.
E.g.f.: exp(x)*(17*x - 1) + 1.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
Comments