Christian Barrientos has authored 10 sequences.
A374722
Number of nonisomorphic spanning trees of the nC_5-snake with constant distance between cutpoints.
Original entry on oeis.org
1, 6, 24, 120, 570, 2850, 14100, 70500, 351750, 1758750, 8790000, 43950000, 219731250, 1098656250, 5493187500, 27465937500, 137329218750, 686646093750, 3433228125000, 17166140625000, 85830691406250, 429153457031250, 2145767226562500, 10728836132812500, 53644180371093750
Offset: 1
For n=2, a(2)=6 because there are 6 spanning trees of 2C_5-snake
__ __ __ __ __ __ __ __, __ __ __ __|__ __ __, __ __ __ \/__ __ __,
__ __ __
__ __ __ __|__ __, __ __ __|__ __, __ __|__ __
| |__
- Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.
-
Drop[CoefficientList[Series[x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)),{x,0,30}],x],1] (* Georg Fischer, Aug 09 2024 *)
-
for(n=1, 30, print1(if(n==1,1,(3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2))),",")) \\ Georg Fischer, Aug 09 2024
A374721
Number of nonisomorphic spanning trees of the triangular snake nC_3.
Original entry on oeis.org
1, 3, 7, 21, 57, 171, 495, 1485, 4401, 13203, 39447, 118341, 354537, 1063611, 3189375, 9568125, 28700001, 86100003, 258286887, 774860661, 2324542617, 6973627851, 20920765455, 62762296365, 188286534801, 564859604403, 1694577750327, 5083733250981, 15251196564297, 45753589692891
Offset: 1
For n=2 the a(2)=3 nonisomorphic spanning trees of 2C_3-snake are:
__ __ __ __, __\__ __, __\/__
- Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.
-
A374721[n_] := 2*3^(n - 2) + 3^Floor[(n - 2)/2]; Array[A374721, 30] (* or *)
LinearRecurrence[{3, 3, -9}, {1, 3, 7}, 30] (* Paolo Xausa, Oct 17 2024 *)
A329910
Number of harmoniously labeled graphs with n edges and at most n vertices.
Original entry on oeis.org
0, 0, 1, 4, 32, 72, 2187, 20736, 262144, 3200000, 48828125, 729000000, 13060694016, 230539333248, 4747561509943, 96717311574016, 2251799813685250, 51998697814229000, 1350851717672990000, 34867844010000000000, 1000000000000000000000, 28531167061100000000000
Offset: 1
a(3)=1 because there is only one harmonious graph with 3 edges and at most 3 vertices.
A085526 contains the odd-indexed terms.
-
Table[If[EvenQ[n],(n*(n-2)/4)^(n/2),((n-1)/2)^n],{n,1,22}] (* Stefano Spezia, Nov 24 2019 *)
A308203
Array read by ascending antidiagonals: T(n,k) = number of non-isomorphic kC_n-snakes for n >= 3 and k >= 2.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 6, 1, 1, 3, 6, 6, 10, 1, 1, 4, 6, 18, 10, 20, 1, 1, 4, 10, 18, 45, 20, 36, 1, 1, 5, 10, 40, 45, 135, 36, 72, 1, 1, 5, 15, 40, 136, 135, 378, 72, 136, 1, 1, 6, 15, 75, 136, 544, 378, 1134, 136, 272, 1
Offset: 3
T(n,2)=1 because there is only one way to connect two copies of C_n.
T(3,k)=1 because C_3 is isomorphic to K_3 and all the selections of 2 cutpoints, in each interior copy of C_3, are equivalent.
T(5,4)=3 there are only 3 non-equivalent strings of length 2 corresponding to the distances between consecutive cutpoints: 11, 12, and 2,2.
Table begins:
1 1 1 1 1 1 1 1 1 1 1
1 2 3 6 10 20 36 72 136 272 528
1 2 3 6 10 20 36 72 136 272 528
1 3 6 18 45 135 378 1134 3321 9963 29646
1 3 6 18 45 135 378 1134 3321 9963 29646
1 4 10 40 136 544 2080 8320 32896 131584 524800
1 4 10 40 136 544 2080 8320 32896 131584 524800
1 5 15 75 325 1625 7875 39375 195625 978125 4884375
1 5 15 75 325 1625 7875 39375 195625 978125 4884375
1 6 21 126 666 3996 23436 140616 840456 5042736 30236976
1 6 21 126 666 3996 23436 140616 840456 5042736 30236976
1 7 28 196 1225 8575 58996 412972 2883601 20185207 141246028
1 7 28 196 1225 8575 58996 412972 2883601 20185207 141246028
1 8 36 288 2080 16640 131328 1050624 8390656 67125248 536887296
1 8 36 288 2080 16640 131328 1050624 8390656 67125248 536887296
1 9 45 405 3321 29889 266085 2394765 21526641 193739769 1743421725
1 9 45 405 3321 29889 266085 2394765 21526641 193739769 1743421725
1 10 55 550 5050 50500 500500 5005000 50005000 500050000 5000050000
A317489
Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 3, 2, 1, 0, 4, 0, 1, 1, 1, 4, 3, 1, 1, 0, 5, 0, 3, 1, 1, 5, 4, 3, 1, 1, 0, 6, 0, 6, 0, 1, 1, 6, 5, 6, 3, 1, 0, 7, 0, 10, 0, 1, 1, 1, 7, 6, 10, 6, 1, 1, 0, 8, 0, 15, 0, 4, 1, 1, 8, 7, 15, 10, 4, 1, 1, 0, 9, 0, 21, 0, 10, 0, 1, 1, 9, 8, 21, 15, 10, 4, 1, 0, 10, 0, 28, 0, 20, 0, 1, 1, 1, 10, 9, 28, 21, 20, 10, 1, 1, 0, 11, 0, 36, 0, 35, 0, 5
Offset: 3
For n=24 and k=3, T(24,3) = 8 = binomial((24-2)/2-3, (3-1)/2) = binomial(8,1).
The first entries of the irregular triangle formed by the values of T(n,k) are:
1;
1;
1;
1, 1;
1, 0;
1, 1;
1, 0, 1;
1, 1, 1;
1, 0, 2;
1, 1, 2, 1;
1, 0, 3, 0;
1, 1, 3, 2;
1, 0, 4, 0, 1;
1, 1, 4, 3, 1;
1, 0, 5, 0, 3;
1, 1, 5, 4, 3, 1;
1, 0, 6, 0, 6, 0;
1, 1, 6, 5, 6, 3;
1, 0, 7, 0, 10, 0, 1;
1, 1, 7, 6, 10, 6, 1;
1, 0, 8, 0, 15, 0, 4;
1, 1, 8, 7, 15, 10, 4, 1;
1, 0, 9, 0, 21, 0, 10, 0;
1, 1, 9, 8, 21, 15, 10, 4;
1, 0, 10, 0, 28, 0, 20, 0, 1;
1, 1, 10, 9, 28, 21, 20, 10, 1;
1, 0, 11, 0, 36, 0, 35, 0, 5;
Row sums of the triangle equal
A226916(n+4).
-
T[n_, k_] := If[Mod[n, 2] == 1 && Mod[k, 2] == 0, 0, Binomial[Quotient[n-1, 2] - k, Quotient[k-1, 2]]];
Table[T[n, k], {n, 3, 30}, {k, 1, Quotient[n, 3]}] // Flatten (* Jean-François Alcover, Sep 13 2018, from PARI *)
-
T(n,k)=if(n%2==1&&k%2==0, 0, binomial((n-1)\2-k, (k-1)\2)); \\ Andrew Howroyd, Sep 07 2018
A255908
Triangle read by rows: T(n,L) = number of rho-labeled graphs with n edges whose labeling is bipartite with boundary value L.
Original entry on oeis.org
2, 4, 8, 8, 32, 48, 16, 128, 288, 384, 32, 512, 1728, 3072, 3840, 64, 2048, 10368, 24576, 38400, 46080, 128, 8192, 62208, 196608, 384000, 552960, 645120, 256, 32768, 373248, 1572864, 3840000, 6635520, 9031680, 10321920, 512, 131072, 2239488, 12582912, 38400000, 79626240, 126443520, 165150720, 185794560, 1024, 524288, 13436928, 100663296, 384000000, 955514880, 1770209280, 2642411520, 3344302080, 3715891200
Offset: 1
For n=5 and L=1, T(5,1)=(2^5)*(1!)*(1+1)^(5-1)=512.
For n=9 and L=3, T(9,3)=12582912.
Triangle, T, begins:
-----------------------------------------------------------------------------
n\L | 0 1 2 3 4 5 6
----|------------------------------------------------------------------------
1 | 2;
2 | 4, 8;
3 | 8, 32, 48;
4 | 16, 128, 288, 384;
5 | 32, 512, 1728, 3072, 3840;
6 | 64, 2048, 10368, 24576, 38400, 46080;
7 | 128, 8192, 62208, 196608, 384000, 552960, 645120;
8 | 256, 32768, 373248, 1572864, 3840000, 6635520, 9031680, ...
...
For n=2 and L=1, T(2,1)=8, because: the bipartite graph <{v1,v2,v3},{x1=v1v2,x2=v1v3}> has rho-labelings (2,1,3),(2,1,4) with L=1 on the stable set {x2} and rho-labelings (1,2,0),(0,4,1) with L=1 on the stable set {x1,x3}; the bipartite graph <{v1,v2,v3,v4},{x1=v1v2,x2=v3v4}> has rho-labeling (0,4,1,3),(1,2,0,3) with L=1 on the stable set {v1,v3} and rho-labeling (4,0,3,1),(2,1,3,0) with L=1 on the stable set {v2,v4}. - _Danny Rorabaugh_, Apr 03 2015
-
[2^n*Factorial(l)*(l+1)^(n-l): l in [0..n-1], n in [1..10]]; // Bruno Berselli, Aug 05 2015
-
t[n_, l_] := 2^n*l!(l+1)^(n-l); Table[ t[n, l], {n, 8}, {l, 0, n-1}] // Flatten (* Robert G. Wilson v, Jul 05 2015 *)
A245519
Number of alpha-labeled graphs with n edges and at most n vertices.
Original entry on oeis.org
0, 0, 0, 2, 10, 64, 336, 1872, 11104, 71944, 508032, 3511232, 27192704, 223750464, 1947253504, 17899536448, 173156535168, 1760383827776, 18752453106176, 209034916385472, 2432351796434560, 29509268795249700
Offset: 1
For n=4, a(4)=2, there are 2 alpha-labeled graphs with 4 edges and at most 4 vertices.
For n=10, a(10)=71944, there are 71944 alpha-labeled graphs with 10 edges and at most 10 vertices.
- Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
A245518
Irregular triangle read by rows: T(n,i) = number of alpha-labeled graphs with n edges that do not use the label i, for 1 <= i <= n-1 and n >= 4.
Original entry on oeis.org
1, 0, 1, 4, 2, 2, 4, 16, 12, 8, 12, 16, 64, 64, 40, 40, 64, 64, 284, 328, 236, 176, 236, 328, 284, 1360, 1760, 1432, 1000, 1000, 1432, 1760, 1360, 7184, 9928, 9092, 6536, 5312, 6536, 9092, 9928, 7184
Offset: 4
For n=4 and i=2, a(4,2) = 0.
For n=8 and i=5, a(8,5) = 64.
Triangle begins:
[n\i] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[4] 1, 0, 1;
[5] 4, 2, 2, 4;
[6] 16, 12, 8, 12, 16;
[7] 64, 64, 40, 40, 64, 64;
[8] 284, 328, 236, 176, 236, 328, 284;
[9] 1360, 1760, 1432, 1000, 1000, 1432, 1760, 1360;
[10] 7184, 9928, 9092, 6536, 5312, 6536, 9092, 9928, 7184;
. . .
- Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
A245517
Irregular triangle read by rows: T(n,L) = number of alpha-labeled graphs with n edges and boundary value L that do not use one number from (1,2,...,n-1) as a label (n >= 4, 1 <= L <= n - 2).
Original entry on oeis.org
1, 1, 4, 4, 4, 12, 20, 20, 12, 32, 88, 96, 88, 32, 80, 352, 504, 504, 352, 80, 192, 1328, 2592, 2880, 2592, 1328, 192, 448, 4816, 12852, 17280, 17280, 12852, 4816, 448
Offset: 4
For n=9 and L=5, T(9,5) = 2592.
For n=10 and L=4, T(10,4) = 17280.
Triangle begins:
[n\L] [1] [2] [3] [4] [5] [6] [7] [8]
[4] 1, 1;
[5] 4, 4, 4;
[6] 12, 20, 20, 12;
[7] 32, 88, 96, 88, 32;
[8] 80, 352, 504, 504, 352, 80;
[9] 192, 1328, 2592, 2880, 2592, 1328, 192;
[10] 448, 4816, 12852, 17280, 17280, 12852, 4816, 448;
...
- Christian Barrientos, Sarah Minion, On the number of alpha-labeled graphs, Discussiones Mathematicae Graph Theory, to appear.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
A241094
Triangle read by rows: T(n,i) = number of gracefully labeled graphs with n edges that do not use the label i, 1 <= i <= n-1, n > 1.
Original entry on oeis.org
0, 1, 1, 4, 4, 4, 18, 24, 24, 18, 96, 144, 144, 96, 600, 960, 1080, 1080, 960, 600, 4320, 7200, 8460, 8460, 8460, 7200, 4320, 35280, 60840, 75600, 80640, 80640, 75600, 60480, 35280, 322560, 564480, 725760, 806400, 806400, 806400, 725760, 564480, 322560
Offset: 2
For n=7 and i=3, g(7,3) = 1080.
For n=7 and i=5, g(7,5) = 960.
Triangle begins:
[n\i] [1] [2] [3] [4] [5] [6] [7] [8]
[2] 0;
[3] 1, 1;
[4] 4, 4, 4;
[5] 18, 24, 24, 18;
[6] 96, 144, 144, 144, 96;
[7] 600, 960, 1080, 1080, 960, 600;
[8] 4320, 7200, 8640, 8640, 8640, 7200, 4320;
[9] 35280, 60480, 75600, 80640, 80640, 75600, 60480, 35280;
...
- _Bruno Berselli_, Apr 23 2014
- C. Barrientos and S. M. Minion, Enumerating families of labeled graphs, J. Integer Seq., 18(2015), article 15.1.7.
- J. A. Gallian, A dynamic survey of graph labeling, Elec. J. Combin., (2013), #DS6.
- David A. Sheppard, The factorial representation of major balanced labelled graphs, Discrete Math., 15(1976), no. 4, 379-388.
-
/* As triangle: */ [[i le Floor(n/2) select Factorial(n-2)*(n-1-i)*i else Factorial(n-2)*(n-i)*(i-1): i in [1..n-1]]: n in [2..10]]; // Bruno Berselli, Apr 23 2014
-
Labeled:=(i,n) piecewise(n<2 or i<1, -infinity, 1 <= i <= floor(n/2), GAMMA(n-1)*(n-1-i)*i, ceil((n+1)/2) <= i <= n-1, GAMMA(n-1)*(n-i)*(i-1), infinity):
-
n=10; (* This number must be replaced every time in order to produce the different entries of the sequence *)
For[i = 1, i <= Floor[n/2], i++, g[n_,i_]:=(n-2)!*(n-1-i)*i; Print["g(",n,",",i,")=", g[n,i]]]
For[i = Ceiling[(n+1)/2], i <= (n-1), i++, g[n_,i_]:=(n-2)!*(n-i)*(i-1); Print["g(",n,",",i,")=",g[n,i]]]
Comments