cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sarah Minion

Sarah Minion's wiki page.

Sarah Minion has authored 6 sequences.

A317489 Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 3, 2, 1, 0, 4, 0, 1, 1, 1, 4, 3, 1, 1, 0, 5, 0, 3, 1, 1, 5, 4, 3, 1, 1, 0, 6, 0, 6, 0, 1, 1, 6, 5, 6, 3, 1, 0, 7, 0, 10, 0, 1, 1, 1, 7, 6, 10, 6, 1, 1, 0, 8, 0, 15, 0, 4, 1, 1, 8, 7, 15, 10, 4, 1, 1, 0, 9, 0, 21, 0, 10, 0, 1, 1, 9, 8, 21, 15, 10, 4, 1, 0, 10, 0, 28, 0, 20, 0, 1, 1, 1, 10, 9, 28, 21, 20, 10, 1, 1, 0, 11, 0, 36, 0, 35, 0, 5
Offset: 3

Author

Keywords

Examples

			For n=24 and k=3, T(24,3) = 8 = binomial((24-2)/2-3, (3-1)/2) = binomial(8,1).
The first entries of the irregular triangle formed by the values of T(n,k) are:
  1;
  1;
  1;
  1,  1;
  1,  0;
  1,  1;
  1,  0,  1;
  1,  1,  1;
  1,  0,  2;
  1,  1,  2,  1;
  1,  0,  3,  0;
  1,  1,  3,  2;
  1,  0,  4,  0,  1;
  1,  1,  4,  3,  1;
  1,  0,  5,  0,  3;
  1,  1,  5,  4,  3,  1;
  1,  0,  6,  0,  6,  0;
  1,  1,  6,  5,  6,  3;
  1,  0,  7,  0, 10,  0,  1;
  1,  1,  7,  6, 10,  6,  1;
  1,  0,  8,  0, 15,  0,  4;
  1,  1,  8,  7, 15, 10,  4,  1;
  1,  0,  9,  0, 21,  0, 10,  0;
  1,  1,  9,  8, 21, 15, 10,  4;
  1,  0, 10,  0, 28,  0, 20,  0,  1;
  1,  1, 10,  9, 28, 21, 20, 10,  1;
  1,  0, 11,  0, 36,  0, 35,  0,  5;
		

Crossrefs

Row sums of the triangle equal A226916(n+4).

Programs

  • Mathematica
    T[n_, k_] := If[Mod[n, 2] == 1 && Mod[k, 2] == 0, 0, Binomial[Quotient[n-1, 2] - k, Quotient[k-1, 2]]];
    Table[T[n, k], {n, 3, 30}, {k, 1, Quotient[n, 3]}] // Flatten (* Jean-François Alcover, Sep 13 2018, from PARI *)
  • PARI
    T(n,k)=if(n%2==1&&k%2==0, 0,  binomial((n-1)\2-k, (k-1)\2)); \\ Andrew Howroyd, Sep 07 2018

Formula

T(n,k) = 0 if n is odd and k is even;
T(n,k) = binomial((n-1)/2-k,(k-1)/2) if n is odd and k is odd;
T(n,k) = binomial((n-2)/2-k,(k-1)/2) if n is even and k is odd;
T(n,k) = binomial((n-2)/2-k,(k-2)/2) if n is even and k is even.

A255908 Triangle read by rows: T(n,L) = number of rho-labeled graphs with n edges whose labeling is bipartite with boundary value L.

Original entry on oeis.org

2, 4, 8, 8, 32, 48, 16, 128, 288, 384, 32, 512, 1728, 3072, 3840, 64, 2048, 10368, 24576, 38400, 46080, 128, 8192, 62208, 196608, 384000, 552960, 645120, 256, 32768, 373248, 1572864, 3840000, 6635520, 9031680, 10321920, 512, 131072, 2239488, 12582912, 38400000, 79626240, 126443520, 165150720, 185794560, 1024, 524288, 13436928, 100663296, 384000000, 955514880, 1770209280, 2642411520, 3344302080, 3715891200
Offset: 1

Author

Keywords

Comments

A graph with n edges is rho-labeled if there exists a one-to-one mapping from its vertex set to {0,1,...,2n} such that every edge receives as label the absolute difference of its end-vertices and the edge labels are x_1, x_2, ..., x_n where x_i = i or x_i = 2n + 1 - i. A rho-labeling of a bipartite graph is said to be bipartite when the labels of one stable set are smaller than the labels on the other stable set. The largest of the smaller vertex labels is its boundary value.
From Robert G. Wilson v, Jul 05 2015: (Start)
The columns:
T(n, 0) = 2^n,
T(n, 1) = 2^(2n-1),
T(n, 2) = 2^(n+1)*3^(n-2),
T(n, 3) = 3*2^(3n-5),
T(n, 4) = 3*2^(n+3)*5^(n-4),
T(n, 5) = 5*2^(2n-2)*3^(n-4), etc.
The diagonals:
the main, T(n, n-1) = 2^n*n*(n-1!) = 2*A002866,
the second diagonal, T(n, n-2) = 2^n*(n-1)^2*(n-2)! = 4*A014479,
the third diagonal, T(n, n-3) = 2^n*(n-2)^3*(n-3)!,
the k_th diagonal, T(n, n-k) = 2^n*(n-k)^k*(n-k)!, etc.
... (End)

Examples

			For n=5 and L=1, T(5,1)=(2^5)*(1!)*(1+1)^(5-1)=512.
For n=9 and L=3, T(9,3)=12582912.
Triangle, T, begins:
-----------------------------------------------------------------------------
n\L |   0       1         2          3          4          5           6
----|------------------------------------------------------------------------
1   |   2;
2   |   4,      8;
3   |   8,     32,       48;
4   |  16,    128,      288,       384;
5   |  32,    512,     1728,      3072,      3840;
6   |  64,   2048,    10368,     24576,     38400,     46080;
7   | 128,   8192,    62208,    196608,    384000,    552960,     645120;
8   | 256,  32768,   373248,   1572864,   3840000,   6635520,    9031680, ...
...
For n=2 and L=1, T(2,1)=8, because: the bipartite graph <{v1,v2,v3},{x1=v1v2,x2=v1v3}> has rho-labelings (2,1,3),(2,1,4) with L=1 on the stable set {x2} and rho-labelings (1,2,0),(0,4,1) with L=1 on the stable set {x1,x3}; the bipartite graph <{v1,v2,v3,v4},{x1=v1v2,x2=v3v4}> has rho-labeling (0,4,1,3),(1,2,0,3) with L=1 on the stable set {v1,v3} and rho-labeling (4,0,3,1),(2,1,3,0) with L=1 on the stable set {v2,v4}. - _Danny Rorabaugh_, Apr 03 2015
		

Programs

  • Magma
    [2^n*Factorial(l)*(l+1)^(n-l): l in [0..n-1], n in [1..10]]; // Bruno Berselli, Aug 05 2015
  • Mathematica
    t[n_, l_] := 2^n*l!(l+1)^(n-l); Table[ t[n, l], {n, 8}, {l, 0, n-1}] // Flatten (* Robert G. Wilson v, Jul 05 2015 *)

Formula

For n>=1, 0<=L<=n-1, T(n,L)=(2^n)*(L!)*(L+1)^(n-L).

A245519 Number of alpha-labeled graphs with n edges and at most n vertices.

Original entry on oeis.org

0, 0, 0, 2, 10, 64, 336, 1872, 11104, 71944, 508032, 3511232, 27192704, 223750464, 1947253504, 17899536448, 173156535168, 1760383827776, 18752453106176, 209034916385472, 2432351796434560, 29509268795249700
Offset: 1

Author

Keywords

Examples

			For n=4, a(4)=2, there are 2 alpha-labeled graphs with 4 edges and at most 4 vertices.
For n=10, a(10)=71944, there are 71944 alpha-labeled graphs with 10 edges and at most 10 vertices.
		

Crossrefs

Formula

a(n) = Sum_{L=1..n-2} Sum_{i=1..n-1} Product_{k=1..n} d(L,k,i), where
for i < L,
d(L,k) if 1 <= k <= i,
d(L,k,i) ={ d(L,k) - 1 if i < k < n - i,
d(L,k) if n - i <= k <= n;
for i > L + 1,
d(L,k) if 1 <= k <= n - i,
d(L,k,i) ={ d(L,k) - 1 if n - i < k < n - i + L + 2,
d(L,k) if n - i + L + 2 <= k <= n.
k if 1 <= k < m,
d(L,k) ={ L + 1 if m <= k <= M,
n + 1 - k if M < k <= n,
m = min{L + 1, n - L}, M = max{L + 1, n - L}.

A245518 Irregular triangle read by rows: T(n,i) = number of alpha-labeled graphs with n edges that do not use the label i, for 1 <= i <= n-1 and n >= 4.

Original entry on oeis.org

1, 0, 1, 4, 2, 2, 4, 16, 12, 8, 12, 16, 64, 64, 40, 40, 64, 64, 284, 328, 236, 176, 236, 328, 284, 1360, 1760, 1432, 1000, 1000, 1432, 1760, 1360, 7184, 9928, 9092, 6536, 5312, 6536, 9092, 9928, 7184
Offset: 4

Author

Keywords

Examples

			For n=4 and i=2, a(4,2) = 0.
For n=8 and i=5, a(8,5) = 64.
Triangle begins:
[n\i] [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]     [9]
[4]    1,      0,      1;
[5]    4,      2,      2,      4;
[6]    16,     12,     8,      12,     16;
[7]    64,     64,     40,     40,     64,     64;
[8]    284,    328,    236,    176,    236,    328,    284;
[9]    1360,   1760,   1432,   1000,   1000,   1432,   1760,   1360;
[10]   7184,   9928,   9092,   6536,   5312,   6536,   9092,   9928,   7184;
. . .
		

Crossrefs

Formula

a(n,i) = sum_{L=1..^n-2} product_{k=1..n} d(L,k,i), where
for i < L,
d(L,k) if 1 <= k <= i,
d(L,k,i) ={ d(L,k) - 1 if i < k < n - i,
d(L,k) if n - i <= k <= n;
for i > L + 1,
d(L,k) if 1 <= k <= n - i,
d(L,k,i) ={ d(L,k) - 1 if n - i < k < n - i + L + 2,
d(L,k) if n - i + L + 2 <= k <= n.
k if 1 <= k < m,
d(L,k) ={ L + 1 if m <= k <= M,
n + 1 - k if M < k <= n,
m = min{L + 1, n - L}, M = max{L + 1, n - L}.

A245517 Irregular triangle read by rows: T(n,L) = number of alpha-labeled graphs with n edges and boundary value L that do not use one number from (1,2,...,n-1) as a label (n >= 4, 1 <= L <= n - 2).

Original entry on oeis.org

1, 1, 4, 4, 4, 12, 20, 20, 12, 32, 88, 96, 88, 32, 80, 352, 504, 504, 352, 80, 192, 1328, 2592, 2880, 2592, 1328, 192, 448, 4816, 12852, 17280, 17280, 12852, 4816, 448
Offset: 4

Author

Keywords

Examples

			For n=9 and L=5, T(9,5) = 2592.
For n=10 and L=4, T(10,4) = 17280.
Triangle begins:
[n\L]  [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[4]     1,      1;
[5]     4,      4,      4;
[6]     12,     20,     20,     12;
[7]     32,     88,     96,     88,     32;
[8]     80,     352,    504,    504,    352,    80;
[9]     192,    1328,   2592,   2880,   2592,   1328,   192;
[10]    448,    4816,   12852,  17280,  17280,  12852,  4816,   448;
...
		

Crossrefs

Formula

a(n,L,i) = \sum_{i = 1}^{n - 1} \prod_{k = 1}^{n} d(L,k,i), where
for i < L,
d(L,k) if 1 <= k <= i,
d(L,k,i) ={ d(L,k) - 1 if i < k < n - i,
d(L,k) if n - i <= k <= n;
for i > L + 1,
d(L,k) if 1 <= k <= n - i,
d(L,k,i) ={ d(L,k) - 1 if n - i < k < n - i + L + 2,
d(L,k) if n - i + L + 2 <= k <= n.
k if 1 <= k < m,
d(L,k) ={ L + 1 if m <= k <= M,
n + 1 - k if M < k <= n,
m = min{L + 1, n - L}, M = max{L + 1, n - L}.

A241094 Triangle read by rows: T(n,i) = number of gracefully labeled graphs with n edges that do not use the label i, 1 <= i <= n-1, n > 1.

Original entry on oeis.org

0, 1, 1, 4, 4, 4, 18, 24, 24, 18, 96, 144, 144, 96, 600, 960, 1080, 1080, 960, 600, 4320, 7200, 8460, 8460, 8460, 7200, 4320, 35280, 60840, 75600, 80640, 80640, 75600, 60480, 35280, 322560, 564480, 725760, 806400, 806400, 806400, 725760, 564480, 322560
Offset: 2

Author

Keywords

Comments

A graph with n edges is graceful if its vertices can be labeled with distinct integers in the range 0,1,...,n in such a way that when the edges are labeled with the absolute differences between the labels of their end-vertices, the n edges have the distinct labels 1,2,...,n.

Examples

			For n=7 and i=3, g(7,3) = 1080.
For n=7 and i=5, g(7,5) = 960.
Triangle begins:
[n\i]  [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[2]     0;
[3]     1,      1;
[4]     4,      4,      4;
[5]    18,     24,     24,     18;
[6]    96,    144,    144,    144,     96;
[7]   600,    960,   1080,   1080,    960,    600;
[8]  4320,   7200,   8640,   8640,   8640,   7200,   4320;
[9] 35280,  60480,  75600,  80640,  80640,  75600,  60480,  35280;
...
- _Bruno Berselli_, Apr 23 2014
		

Programs

  • Magma
    /* As triangle: */ [[i le Floor(n/2) select Factorial(n-2)*(n-1-i)*i else Factorial(n-2)*(n-i)*(i-1): i in [1..n-1]]: n in [2..10]]; // Bruno Berselli, Apr 23 2014
  • Maple
    Labeled:=(i,n) piecewise(n<2 or i<1, -infinity, 1 <= i <= floor(n/2), GAMMA(n-1)*(n-1-i)*i, ceil((n+1)/2) <= i <= n-1, GAMMA(n-1)*(n-i)*(i-1), infinity):
  • Mathematica
    n=10; (* This number must be replaced every time in order to produce the different entries of the sequence *)
    For[i = 1, i <= Floor[n/2], i++, g[n_,i_]:=(n-2)!*(n-1-i)*i; Print["g(",n,",",i,")=", g[n,i]]]
    For[i = Ceiling[(n+1)/2], i <= (n-1), i++, g[n_,i_]:=(n-2)!*(n-i)*(i-1); Print["g(",n,",",i,")=",g[n,i]]]

Formula

For n >=2, if 1 <= i <= floor(n/2), g(n,i) = (n-2)!*(n-1-i)*i; if ceiling((n+1)/2) <= i <= n-1, g(n,i) = (n-2)!*(n-i)*(i-1).
# alternative
A241094 := proc(n,i)
if n <2 or i<1 or i >= n then
0;
elif i <= floor(n/2) then
GAMMA(n-1)*(n-1-i)*i;
else
GAMMA(n-1)*(n-i)*(i-1) ;
fi ;
end proc:
seq(seq(A241094(n,i),i=1..n-1),n=2..12); # R. J. Mathar, Jul 30 2024