cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexander Adamchuk

Alexander Adamchuk's wiki page.

Alexander Adamchuk has authored 827 sequences. Here are the ten most recent ones:

A234252 a(n) = ((n-1)^(n+1) + (-1)^n*(n+1)^(n-1))/(n^2).

Original entry on oeis.org

-1, 1, 0, 23, 112, 2637, 28928, 705259, 12021504, 337390073, 7752749056, 252186614847, 7261683740672, 271082082053317, 9359536638984192, 396049017137512403, 15920162462882529280, 754792662169555947633, 34587513064809080815616, 1818644980834260579498343
Offset: 1

Author

Alexander Adamchuk, Dec 22 2013

Keywords

Comments

a(2n) = A233446(n) = ((2n-1)^(2n+1) + (2n+1)^(2n-1))/(2n)^2 = A154682(n)/(2n)^2 for n > 0.

Crossrefs

Programs

  • Mathematica
    Table[((m-1)^(m+1)+(-1)^m*(m+1)^(m-1))/(m^2),{m,1,20}]
  • PARI
    a(n) = ((n-1)^(n+1) + (-1)^n*(n+1)^(n-1))/n^2; \\ Michel Marcus, Jun 06 2021

Formula

a(n) = ((n-1)^(n+1) + (-1)^n*(n+1)^(n-1))/(n^2).

A233446 a(n) = ((2n-1)^(2n+1) + (2n+1)^(2n-1))/(2n)^2 = A154682(n)/(2n)^2 for n > 0.

Original entry on oeis.org

1, 23, 2637, 705259, 337390073, 252186614847, 271082082053317, 396049017137512403, 754792662169555947633, 1818644980834260579498343, 5405067064522549127719680701, 19423396040054801221090342470843, 83016890560608261435356904433668457, 416213066932582983199004231480676255119, 2419095491735191624607023665166934072373813
Offset: 1

Author

Alexander Adamchuk, Dec 10 2013

Keywords

Crossrefs

Cf. A154682.

Programs

  • Mathematica
    Table[((2 n - 1)^(2 n + 1) + (2 n + 1)^(2 n - 1))/(2 n)^2, {n, 1, 15}]

Formula

a(n) = ((2n-1)^(2n+1) + (2n+1)^(2n-1))/(2n)^2; n > 0.

A211611 a(n) = Sum_{k=1..n-1} C(k)^n, where C(k) is a Catalan number.

Original entry on oeis.org

1, 9, 642, 540982, 5496576970, 698491214560174, 1147342896257677900291, 25005346993500437111980892595, 7381619397278667883874693730628586499, 30009934325456999669083059570156145437948880627, 1703283943023520710008632777768663744247664926649672215939
Offset: 2

Author

Alexander Adamchuk, Apr 17 2012

Keywords

Comments

The C(k) are the Catalan numbers, C(k) = A000108(k) = (2k)!/(k!*(k+1)!) = C(2*k,k)/(k+1).
p divides a(p) for prime p of the form p = 6k + 1 (A002476).

Crossrefs

Programs

  • Mathematica
    Table[ Sum[ (Binomial[2 k, k]/(k + 1))^n, {k, 1, n - 1}], {n, 2, 13}]

Formula

a(n) = Sum_{k=1..n-1} binomial(2*k, k)/(k+1)^n.
a(n) ~ exp(3/8) * 4^(n^2-n) / (Pi^(n/2) * n^(3*n/2)). - Vaclav Kotesovec, Mar 03 2014

A211610 a(n) = Sum_{k=1..n-1} binomial (2*k, k)^n.

Original entry on oeis.org

4, 224, 161312, 1683907808, 256213978094784, 575112148876911852416, 19248204431728945392010740480, 9687459136669902998216039379883774976, 73815961078227084527800998811241905249902260224, 8562177846610881578580018959490439733543225146878872883200
Offset: 2

Author

Alexander Adamchuk, Apr 17 2012

Keywords

Comments

2^n divides a(n).
p divides a(p) for prime p of the form p = 6k + 1.

Crossrefs

Programs

  • Mathematica
    Table[ Sum[ Binomial[2 k, k]^n, {k, 1, n - 1}], {n, 2, 13}]

Formula

a(n) = Sum_{k=1..n-1} binomial(2*k, k)^n.
a(n) ~ exp(3/8) * 4^(n^2-n) / (Pi^(n/2) * n^(n/2)). - Vaclav Kotesovec, Mar 03 2014

A211601 a(n) = (binomial(p^n, p^(n-1)) - binomial(p^(n-1), p^(n-2))) / p^(3n-2) for p = 3.

Original entry on oeis.org

1, 2143, 39057044954221855, 507249004999029430448035076427591041390649615630234312261967
Offset: 2

Author

Alexander Adamchuk, Apr 16 2012

Keywords

Comments

Consider the difference between two binomials f(p,k) = binomial(p^k, p^(k-1)) - binomial(p^(k-1), p^(k-2)).
A theorem from the A. I. Shirshov paper (in Russian) states:
p^(3k - 3) divides f(p,k) for prime p = 2 and k > 2.
p^(3k - 2) divides f(p,k) for prime p = 3 and k > 1.
p^(3k - 1) divides f(p,k) for prime p > 3 and k > 1.

References

  • D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44

Crossrefs

Programs

  • Mathematica
    p = 3; Table[(Binomial[p^n, p^(n - 1)] - Binomial[p^(n - 1), p^(n - 2)]) / 3^(3n - 2), {n, 2, 6}]

Formula

a(n) = (binomial(3^n, 3^(n-1)) - binomial(3^(n-1), 3^(n-2))) / 3^(3*n-2).

A211600 a(n) = (binomial(p^n, p^(n-1)) - binomial(p^(n-1), p^(n-2))) / p^(3n-3) for p = 2.

Original entry on oeis.org

1, 25, 146745, 55927250376633, 91366371314728099305354933301689, 2750710880016902131123422793322699970110063817946068739768171777481145
Offset: 3

Author

Alexander Adamchuk, Apr 16 2012

Keywords

Comments

Consider the difference between two binomials f(p,k) = binomial(p^k, p^(k-1)) - binomial(p^(k-1), p^(k-2)).
A theorem from the A. I. Shirshov paper (in Russian) states:
p^(3k - 3) divides f(p,k) for prime p = 2 and k > 2.
p^(3k - 2) divides f(p,k) for prime p = 3 and k > 1.
p^(3k - 1) divides f(p,k) for prime p > 3 and k > 1.

Examples

			a(3) = 1 is the difference between central binomials C(8,4) - C(4,2) = 70 - 6 = 64 divided by 2^(3*2 - 3) = 64.
		

References

  • D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44

Crossrefs

Programs

  • Maple
    A211600:=n->(binomial(2^n, 2^(n - 1)) - binomial(2^(n - 1), 2^(n - 2))) / 2^(3*n - 3): seq(A211600(n), n=3..9); # Wesley Ivan Hurt, Apr 25 2017
  • Mathematica
    p = 2; Table[(Binomial[p^n, p^(n - 1)] - Binomial[p^(n - 1), p^(n - 2)]) / 2^(3n - 3), {n, 3, 9}]

Formula

a(n) = (binomial(2^n, 2^(n-1)) - binomial(2^(n-1), 2^(n-2))) / 2^(3*n-3).
a(n) = (A037293(n) - A037293(n-1)) / 2^(3*n - 3).

A181990 a(n) = Sum_{0 <= k <= m < p} (binomial(m, k)^(p-1))/p, where p is the n-th prime.

Original entry on oeis.org

3, 399, 12708885, 124515078454872901983423, 39212583445587381894247266262023061, 43487633454143579523135045521112077473364484383507327790688372131, 157851796824901989964381293031623545741924564754192453966085327785455257503133278729
Offset: 2

Author

Alexander Adamchuk, Apr 04 2012

Keywords

Comments

a(n) is a sum of all elements in the first p rows of Pascal's triangle each raised to the (p-1) power and divided by p, where p is the n-th prime.
For p = 3 and 7 (and their powers like 3, 9, 27, ... and 7, 49, ...) the sums of all elements in n = p^k top rows of Pascal's triangle each raised to the (n-1) = (p^k-1) power are divisible by n^2 = p^(2k) for all k > 0.

Programs

  • Mathematica
    Table[(Sum[Binomial[m, k]^(Prime[n] - 1), {m, 0, Prime[n] - 1}, {k, 0, m}])/Prime[n], {n, 2, 10}]
  • PARI
    a(n) = my(p=prime(n)); sum(m=0, p-1, sum(k=0, m, binomial(m,k)^(p-1))/p); \\ Michel Marcus, Dec 03 2018

A181426 Numerator of Sum_{k=1..n} k^4 / Product_{k=1..n} k^4.

Original entry on oeis.org

1, 17, 49, 59, 979, 91, 167, 731, 5111, 517, 1817, 6071, 109, 18241, 22289, 2771, 131, 28823, 67, 51619, 11911, 34891, 15557, 257, 1949, 22313, 2267, 14123, 153931, 5273999, 1, 3167, 45091, 3569, 268309, 126947, 4217, 127, 369641, 201679, 85739
Offset: 1

Author

Alexander Adamchuk, Oct 18 2010

Keywords

Comments

a(n) = 1 for n = {1, 31, 59, 94, 104, 122, 133, 181, 206, 223, ...} = A166604.

Examples

			The first few fractions are 1, 17/16, 49/648, 59/55296, 979/207360000, 91/10749542400, 167/23044331520000, ... = A181426/A334734.
		

Crossrefs

Cf. A090585 = Numerator of Sum/Product of first n numbers.
Cf. A125294 = Numerator of Sum/Product of squares of first n numbers.
Cf. A166604, A334734 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[ k^4, {k, 1, n}] / Product[k^4, {k, 1, n}]], {n, 1, 100}]
    With[{c=Range[50]^4},Numerator[Accumulate[c]/FoldList[Times,c]]] (* Harvey P. Dale, Jul 03 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k^4)/prod(k=1, n, k^4)); \\ Michel Marcus, May 09 2020

A157438 Primes p such that p^2 divides A085606((p-1)/2) = ((p-1)/2-1)^((p-1)/2) - 1.

Original entry on oeis.org

5, 127, 607
Offset: 1

Author

Alexander Adamchuk, Mar 01 2009

Keywords

Comments

Primes p such that (-3/2)^((p-1)/2) == 1 - p/6 (mod p^2).[Max Alekseyev, Dec 05 2010]
Primes p that divide A085606((p-1)/2) are listed in A157437.
No other terms below 10^11. [From Max Alekseyev, Dec 05 2010.]

Crossrefs

A162160 Indices m such that A123112(n)^n is a sum of n consecutive primes starting at prime(m).

Original entry on oeis.org

1, 7, 85, 689, 13, 391570, 117658543504, 16361827178594, 459127968423607
Offset: 1

Author

Alexander Adamchuk, Jun 26 2009

Keywords

Examples

			For n = 2, A123112(2)^2 = 6^2 = 36 = 17 + 19 = prime(7) + prime(8). Thus a(2) = 7.
		

Crossrefs

Cf. A123112.

Extensions

Definition brushed, a(6) added, a(7) from D. Johnson - R. J. Mathar, Sep 16 2009
a(8) and a(9) from Max Alekseyev, Sep 18 2009