cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Max Alekseyev

Max Alekseyev's wiki page.

Max Alekseyev has authored 794 sequences. Here are the ten most recent ones:

A387352 Numbers m with deficiency 32: sigma(m) - 2*m = -32.

Original entry on oeis.org

250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1

Author

Max Alekseyev, Aug 27 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 31) for k in A247952.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).
Cf. A247952.

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.

A386399 Number of forests with at most n unlabeled nodes.

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 43, 80, 156, 309, 638, 1348, 2949, 6607, 15206, 35720, 85625, 208588, 515787, 1291316, 3269194, 8355832, 21539988, 55942920, 146271594, 384746580, 1017522228, 2704227858, 7219183490, 19351410860, 52068524665, 140588391713, 380824067016
Offset: 0

Author

Max Alekseyev, Jul 20 2025

Keywords

Crossrefs

Formula

G.f.: exp(sum_{k>0} B(x^k)/k ) / (1-x), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.

A384035 Number of vector differences between two permutations of order n, up to multiplication by positive rational numbers and permutations of the components.

Original entry on oeis.org

1, 1, 2, 4, 13, 49, 228, 1034, 5133, 25710, 133872, 708976, 3846150, 21170077, 118429072, 670537495
Offset: 0

Author

Max Alekseyev, May 17 2025

Keywords

Examples

			For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2. Hence, a(3) = 4.
		

A383926 Powers m^p with prime p, producing primes (m^(p^2) - 1)/(m^p - 1) in A383925.

Original entry on oeis.org

4, 16, 36, 8, 100, 196, 256, 400, 576, 676, 27, 1296, 1600, 2916, 3136, 4356, 5476, 7056, 8100, 8836, 12100, 13456, 14400, 15376, 15876, 16900, 17956, 21316, 22500, 24336, 25600, 28900, 30976, 32400, 33856, 41616, 42436, 44100, 50176, 52900, 55696, 57600, 62500, 65536, 67600, 69696
Offset: 1

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

Permutation of A383923.

Formula

a(n) = m^p with a prime p such that (a(n)^p - 1)/(a(n) - 1) = A383925(n).

A383925 Primes of the form (m^(p^2) - 1)/(m^p - 1) with prime p and integer m >= 2.

Original entry on oeis.org

5, 17, 37, 73, 101, 197, 257, 401, 577, 677, 757, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901, 55697, 57601, 62501, 65537, 67601, 69697
Offset: 1

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

Corresponding values of m^p are listed in A383926.
Permutation of A383924.
Cf. A383923.

A383924 Primes of the form (m^(p^2) - 1)/(m^p - 1) with a prime p, sorted with respect to the value of m^p.

Original entry on oeis.org

5, 73, 17, 757, 37, 101, 197, 257, 401, 513, 577, 677, 1297, 1772893, 1601, 2917, 3137, 4357, 5477, 7057, 64008001, 8101, 8837, 85775383, 12101, 13457, 14401, 15377, 15877, 16901, 308933353, 17957, 21317, 22501, 24337, 25601, 729027001, 28901, 30977, 32401, 33857, 41617, 42437, 44101
Offset: 1

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

The corresponding values of m^p are listed in A383923.
Permutation of A383925.
Cf. A383926.

A383923 Numbers of the form m^p where both p and (m^(p^2) - 1)/(m^p - 1) are prime.

Original entry on oeis.org

4, 8, 16, 27, 36, 100, 196, 256, 400, 512, 576, 676, 1296, 1331, 1600, 2916, 3136, 4356, 5476, 7056, 8000, 8100, 8836, 9261, 12100, 13456, 14400, 15376, 15876, 16900, 17576, 17956, 21316, 22500, 24336, 25600, 27000, 28900, 30976, 32400, 33856, 41616, 42436, 44100, 50176, 52900
Offset: 1

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

Primes (m^(p^2) - 1)/(m^p - 1) are listed in A383924.
Permutation of A383926.
Cf. A383925.

A381339 Number of vector differences between two permutations of order n, up to multiplication by nonzero rational numbers and permutations of the components.

Original entry on oeis.org

1, 1, 2, 3, 9, 28, 128, 539, 2651, 13000, 67466, 355381, 1926343, 10590537, 59234734, 335302599
Offset: 0

Author

Max Alekseyev, Feb 20 2025

Keywords

Comments

Nonzero difference vectors are associated with their images in the projective space, and in addition we do not distinguish vectors that can be permuted one into the other. In the affine space, their number (including zero vector) is given by A019589, implying that a(n) <= A019589(n). Nonzero difference vectors in the projective space are counted by A381243.

Examples

			For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2, and (-2, 1, 1) and (-1, -1, 2) are the same up to negation and reversing the order. Hence, a(3) = 3.
		

Crossrefs

A381243 Number of hyperplanes defined by the nonzero differences of two permutations of order n.

Original entry on oeis.org

0, 0, 1, 6, 85, 1370, 30481, 778610, 24409645, 881325366, 36635553601, 1713454403210, 89415912126223, 5143372266050837, 323667807885619744, 22112062644980805684
Offset: 0

Author

Max Alekseyev, Feb 17 2025

Keywords

Comments

Each of A175176(n) - 1 nonzero differences between two permutations (viewed as vectors) defines a hyperplane in the n-dimensional space. a(n) gives the number of pairwise distinct hyperplanes among them.

Crossrefs