cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383923 Numbers of the form m^p where both p and (m^(p^2) - 1)/(m^p - 1) are prime.

Original entry on oeis.org

4, 8, 16, 27, 36, 100, 196, 256, 400, 512, 576, 676, 1296, 1331, 1600, 2916, 3136, 4356, 5476, 7056, 8000, 8100, 8836, 9261, 12100, 13456, 14400, 15376, 15876, 16900, 17576, 17956, 21316, 22500, 24336, 25600, 27000, 28900, 30976, 32400, 33856, 41616, 42436, 44100, 50176, 52900
Offset: 1

Views

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

Primes (m^(p^2) - 1)/(m^p - 1) are listed in A383924.
Permutation of A383926.
Cf. A383925.

A383925 Primes of the form (m^(p^2) - 1)/(m^p - 1) with prime p and integer m >= 2.

Original entry on oeis.org

5, 17, 37, 73, 101, 197, 257, 401, 577, 677, 757, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177, 52901, 55697, 57601, 62501, 65537, 67601, 69697
Offset: 1

Views

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

Corresponding values of m^p are listed in A383926.
Permutation of A383924.
Cf. A383923.

A383926 Powers m^p with prime p, producing primes (m^(p^2) - 1)/(m^p - 1) in A383925.

Original entry on oeis.org

4, 16, 36, 8, 100, 196, 256, 400, 576, 676, 27, 1296, 1600, 2916, 3136, 4356, 5476, 7056, 8100, 8836, 12100, 13456, 14400, 15376, 15876, 16900, 17956, 21316, 22500, 24336, 25600, 28900, 30976, 32400, 33856, 41616, 42436, 44100, 50176, 52900, 55696, 57600, 62500, 65536, 67600, 69696
Offset: 1

Views

Author

Max Alekseyev, May 15 2025

Keywords

Crossrefs

Permutation of A383923.

Formula

a(n) = m^p with a prime p such that (a(n)^p - 1)/(a(n) - 1) = A383925(n).
Showing 1-3 of 3 results.