A211601 a(n) = (binomial(p^n, p^(n-1)) - binomial(p^(n-1), p^(n-2))) / p^(3n-2) for p = 3.
1, 2143, 39057044954221855, 507249004999029430448035076427591041390649615630234312261967
Offset: 2
References
- D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44
Links
- D. B. Fuks and M. B. Fuks, Arithmetics of binomial coefficients, Kvant 6 (1970), 17-25. (in Russian)
- A. I. Shirshov, On one property of binomial coefficients, Kvant 10 (1971), 16-20. (in Russian)
Programs
-
Mathematica
p = 3; Table[(Binomial[p^n, p^(n - 1)] - Binomial[p^(n - 1), p^(n - 2)]) / 3^(3n - 2), {n, 2, 6}]
Formula
a(n) = (binomial(3^n, 3^(n-1)) - binomial(3^(n-1), 3^(n-2))) / 3^(3*n-2).
Comments