cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Arkadiusz Wesolowski

Arkadiusz Wesolowski's wiki page.

Arkadiusz Wesolowski has authored 740 sequences. Here are the ten most recent ones:

A383267 Decimal expansion of (4/11)^(1/3).

Original entry on oeis.org

7, 1, 3, 7, 6, 5, 8, 5, 5, 5, 0, 3, 6, 0, 8, 1, 7, 0, 6, 7, 1, 8, 9, 9, 9, 9, 1, 7, 6, 2, 6, 6, 1, 2, 4, 7, 5, 9, 0, 7, 9, 6, 5, 4, 7, 5, 8, 9, 0, 3, 8, 0, 6, 6, 9, 1, 5, 6, 2, 6, 7, 5, 2, 0, 8, 4, 5, 8, 3, 1, 4, 7, 0, 6, 7, 7, 1, 8, 7, 5, 6, 4, 6, 3, 2, 4, 0, 3, 3, 9, 9, 3, 2, 2, 6, 8, 1, 7, 1, 7, 2, 4, 4, 6, 4
Offset: 0

Author

Arkadiusz Wesolowski, Apr 21 2025

Keywords

Comments

In the standard cosmology, the temperature of the free-streaming neutrinos which formed the cosmic neutrino background is (4/11)^(1/3) of the relic photon temperature after the electron-positron annihilation in the early universe (assuming that all electrons and positrons annihilated into photons).

Examples

			0.713765855503608170671899991762661247590796547589038066915626752084583...
		

References

  • E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, Redwood City, CA, 1990, p. 503 Appendix A.
  • R. E. Lopez, S. Dodelson, A. Heckler and M. S. Turner, Precision detection of the cosmic neutrino background, Physical Review Letters 82 (1999) 3952-3955, p. 3952.
  • Steven Weinberg, Gravitation and Cosmology Principles and Applications of the General Theory of Relativity, John Wiley, New York, 1972, p. 537.

Crossrefs

Cf. A111728.

Programs

  • Magma
    SetDefaultRealField(RealField(106)); n:=(4/11)^(1/3); Reverse(Intseq(Floor(10^105*n)));
    
  • Mathematica
    RealDigits[(4/11)^(1/3),10,105][[1]] (* Stefano Spezia, Apr 25 2025 *)
  • PARI
    (4/11)^(1/3)

Formula

Equals 1/A111728 = A005480/A010583.

A375459 a(n) = smallest magic sum of any 3 X 3 magic square which contains exactly n squared primes, or 0 if no such magic square exists.

Original entry on oeis.org

21, 18, 15, 51, 195, 435, 76035
Offset: 0

Author

Arkadiusz Wesolowski, Aug 15 2024

Keywords

Comments

a(9) = 0.
a(n) = A268855(n+1) for n = 0, 1, 2, and 5.
a(7) and a(8) - if nonzero, they are greater than 10^10.

Crossrefs

A375361 Odd numbers with at least two prime divisors of the form 4*k + 1 counted with multiplicity.

Original entry on oeis.org

25, 65, 75, 85, 125, 145, 169, 175, 185, 195, 205, 221, 225, 255, 265, 275, 289, 305, 325, 365, 375, 377, 425, 435, 445, 455, 475, 481, 485, 493, 505, 507, 525, 533, 545, 555, 565, 575, 585, 595, 615, 625, 629, 663, 675, 685, 689, 697, 715, 725, 745, 765, 775
Offset: 1

Author

Arkadiusz Wesolowski, Aug 13 2024

Keywords

Comments

Odd numbers k such that k^2 can be expressed as the arithmetic mean of two distinct perfect squares in more than one way. For example, 25^2 = (5^2 + 35^2)/2 = (17^2 + 31^2)/2.
Let x be a squared integer which is the central element of a 3 X 3 magic square in which seven (or more) of the entries are squared integers. If the greatest common divisor of all nine entries is 1, then the square root of x is a composite number that is divisible only by primes congruent to 1 mod 4. For example, sqrt(A221669(5)) = 425 is both in A004613 and in this sequence.

Examples

			65 is in this sequence because 65 has two prime factors of the form 4*k + 1, namely 5 = 4*1 + 1 and 13 = 4*3 + 1.
		

Programs

  • Magma
    f:=func; nopf:=func; sum:=func; [n: n in [1..775 by 2] | sum(n) gt 1];
    
  • PARI
    isok(n) = my(v=Vec(factor(n))); n%2&&sum(t=1, omega(n), if((v[1]%4)[t]==1, v[2][t]))>1;
    
  • PARI
    isok(n) = my(t); if(n%2, for(k=sqrtint(n^2-1)+2, sqrtint(2*n^2-1), if(issquare(2*n^2-k^2)&&t++>1, return(1)))); 0;

A368340 Take the solution to Pellian equation x^2 - 8*n*y^2 = 1 with smallest positive y and x >= 0; sequence gives a(n) = x, or 1 if n is twice a positive square. A368339 gives values of y.

Original entry on oeis.org

3, 1, 5, 17, 19, 7, 15, 1, 17, 9, 197, 49, 51, 127, 11, 577, 35, 1, 37, 721, 13, 199, 24335, 97, 99, 649, 485, 15, 19603, 31, 63, 1, 65, 33, 251, 17, 3699, 57799, 53, 161, 163, 55, 10405, 77617, 19, 1151, 2143295, 4801, 99, 1, 101, 5201, 32080051, 1351, 21, 127
Offset: 1

Author

Arkadiusz Wesolowski, Dec 21 2023

Keywords

Examples

			For n = 1, 2, 3, 4, 5 solutions are (x,y) = (3, 1), (1, 0), (5, 1), (17, 3), (19, 3).
		

Crossrefs

Programs

  • PARI
    pellsolve(n)={if(issquare(n/2), return(1), q=bnfinit('x^2-8*n, 1); i=-1; until(y&&x==floor(x)&&y==floor(y)&&x^2-8*n*y^2==1, f=lift(q.fu[1]^i); x=abs(polcoeff(f, 0)); y=abs(polcoeff(f, 1)); i++); return(x))};

Formula

a(n) = A002350(8*n).
a(n) = sqrt(8*n*A368339(n)^2 + 1).
a(A000217(n)) = 2*n + 1, n >= 1.

A368339 Take the solution to Pellian equation x^2 - 8*n*y^2 = 1 with smallest positive y and x >= 0; sequence gives a(n) = y, or 0 if n is twice a positive square. A368340 gives values of x.

Original entry on oeis.org

1, 0, 1, 3, 3, 1, 2, 0, 2, 1, 21, 5, 5, 12, 1, 51, 3, 0, 3, 57, 1, 15, 1794, 7, 7, 45, 33, 1, 1287, 2, 4, 0, 4, 2, 15, 1, 215, 3315, 3, 9, 9, 3, 561, 4137, 1, 60, 110532, 245, 5, 0, 5, 255, 1557945, 65, 1, 6, 48, 455, 14127, 11, 11, 207480, 20, 29427, 285, 1
Offset: 1

Author

Arkadiusz Wesolowski, Dec 21 2023

Keywords

Examples

			For n = 1, 2, 3, 4, 5 solutions are (x,y) = (3, 1), (1, 0), (5, 1), (17, 3), (19, 3).
		

Crossrefs

Programs

  • PARI
    pellsolve(n)={if(issquare(n/2), return(0), q=bnfinit('x^2-8*n, 1); i=-1; until(y&&x==floor(x)&&y==floor(y)&&x^2-8*n*y^2==1, f=lift(q.fu[1]^i); x=abs(polcoeff(f, 0)); y=abs(polcoeff(f, 1)); i++); return(y))};

Formula

a(n) = A002349(8*n).
a(n) = sqrt((A368340(n)^2 - 1)/(8*n)).
a(A000217(n)) = 1, n >= 1.

A364413 Odd numbers m such that for every k >= 1, m*2^k + 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.

Original entry on oeis.org

189035277393779, 212050850472529, 618127765127603, 777947701660121, 1171304921532749, 1358735367828947, 1834310020939021, 2357654372323739, 2638037471052913, 3025664372930897, 3935005074246167, 4688754513654559, 4996748200142999, 5425272498782051, 5455203077891285
Offset: 1

Author

Arkadiusz Wesolowski, Jul 23 2023

Keywords

Crossrefs

Formula

For n > 34560, a(n) = a(n-34560) + 10014447295554878022.

A364412 Odd numbers m such that for every k >= 1, m*2^k - 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.

Original entry on oeis.org

144323411864333, 175321252530209, 190779128601685, 316031956469111, 389882208980861, 450590081221877, 2420018284798363, 2715458757443051, 3161282469971861, 3366332338600025, 3643757921262355, 4380746955320089, 4409682697067321, 5089175909950511, 5281690092088615
Offset: 1

Author

Arkadiusz Wesolowski, Jul 23 2023

Keywords

Crossrefs

Formula

For n > 34560, a(n) = a(n-34560) + 10014447295554878022.

A364186 Primes p such that p divides 2^((p-1)/x) - 1, where x is the smallest odd prime factor of p - 1.

Original entry on oeis.org

31, 43, 109, 127, 157, 223, 229, 251, 277, 283, 307, 397, 431, 433, 439, 457, 499, 601, 641, 643, 691, 727, 733, 739, 811, 911, 919, 953, 971, 997, 1013, 1021, 1051, 1069, 1093, 1103, 1163, 1181, 1327, 1399, 1423, 1459, 1471, 1579, 1597, 1627, 1657, 1699, 1709
Offset: 1

Author

Arkadiusz Wesolowski, Jul 15 2023

Keywords

References

  • Allan Cunningham, Haupt-exponents of 2, The Quarterly Journal of Pure and Applied Mathematics, Vol. 37 (1906), pp. 122-145.

Crossrefs

Supersequence of A014752.

Programs

  • Magma
    [p: p in PrimesUpTo(1709) | #Factorization(p-1) ge 2 and Modexp(2, Truncate((p-1)/Factorization(p-1)[2][1]), p) eq 1];
    
  • PARI
    forprime(p=2, 1709, v=Vec(factor(p-1))[1]; if(#v>1, t=0; e=v[2]; x=floor(p^(1/e))+1; until(x==p||t==2, if(Mod(x, p)^e==2, t++); x++); if(t==2, print1(p, ", "))));
    
  • PARI
    isok(p) = my(v=Vec(factor(p-1))[1]); isprime(p) && #v>1 && Mod(2, p)^((p-1)/v[2])==1;

A363286 Odd primes p such that the congruence 2^x == 1 (mod p) has no solution for 0 < x < (p - 1)/2.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 97, 101, 103, 107, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 239, 263, 269, 271, 293, 311, 313, 317, 347, 349, 359, 367, 373, 379, 383, 389, 401, 409, 419
Offset: 1

Author

Arkadiusz Wesolowski, May 25 2023

Keywords

Comments

An odd prime p belongs to this sequence if and only if A001917(A000720(p)) is equal to 1 or 2.

Crossrefs

Programs

  • Magma
    [p: p in [3..419 by 2] | IsPrime(p) and (p-1)/Modorder(2, p) le 2];
    
  • PARI
    isok(p) = p%2 && isprime(p) && (p-1)/znorder(Mod(2, p))<=2;
    
  • Python
    from itertools import islice
    from sympy import nextprime, n_order
    def A363286_gen(startvalue=3): # generator of terms >= startvalue
        p = max(startvalue,3)-1
        while (p:=nextprime(p)):
            if n_order(2,p)<<1 >= p-1:
                yield p
    A363286_list = list(islice(A363286_gen(),30)) # Chai Wah Wu, Jul 17 2023

Formula

a(n) ~ (3/2)*n*log((3/2)*n).

A361900 Numbers k such that 3*153479820268467961^2*2^k + 1 is prime.

Original entry on oeis.org

600, 810, 1074, 7974, 22290, 43086
Offset: 1

Author

Arkadiusz Wesolowski, Mar 28 2023

Keywords

Comments

Let p be a prime number of the form 3*153479820268467961^2*2^k + 1 with k > 0, then the multiplicative order of 2 modulo p is not of the form 2^(m+1), m >= 0. Hence, p does not divide any Fermat number F(m) = 2^(2^m) + 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 10^4, 2], PrimeQ[3*153479820268467961^2*2^# + 1] &]