A076335 Brier numbers: numbers that are both Riesel and Sierpiński [Sierpinski], or odd n such that for all k >= 1 the numbers n*2^k + 1 and n*2^k - 1 are composite.
3316923598096294713661, 10439679896374780276373, 11615103277955704975673, 12607110588854501953787, 17855036657007596110949, 21444598169181578466233, 28960674973436106391349, 32099522445515872473461, 32904995562220857573541
Offset: 1
Keywords
Links
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- M. Filaseta et al., On Powers Associated with Sierpiński Numbers, Riesel Numbers and Polignac’s Conjecture, Journal of Number Theory, Volume 128, Issue 7, July 2008, Pages 1916-1940. (See pages 9-10)
- Michael Filaseta and Jacob Juillerat, Consecutive primes which are widely digitally delicate, arXiv:2101.08898 [math.NT], 2021.
- Michael Filaseta, Jacob Juillerat, and Thomas Luckner, Consecutive primes which are widely digitally delicate and Brier numbers, arXiv:2209.10646 [math.NT], 2022. See also Integers (2023) Vol. 23, #A75.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 29. Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 58. Brier numbers revisited, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 68. More on Brier numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, See here for latest information about progress on this sequence
- Eric Weisstein's World of Mathematics, Brier Number
Crossrefs
Extensions
Many terms reported in Problem 29 from "The Prime Problems & Puzzles Connection" from Carlos Rivera, May 30 2010
Entry revised by Arkadiusz Wesolowski, May 17 2012
Entry revised by Carlos Rivera and N. J. A. Sloane, Jan 03 2014
Entry revised by Arkadiusz Wesolowski, Feb 15 2014
Comments