Tom Copeland has authored 55 sequences. Here are the ten most recent ones:
A356146
Coefficients of the partition polynomials that are binomial convolutions of the partition polynomials of A133314, the refined Euler characteristic polynomials of the permutahedra and coefficient polynomials of reciprocals of Taylor series or e.g.f.s. Irregular triangle read by rows with length given by A000041.
Original entry on oeis.org
1, 1, -3, 1, 12, -9, 1, -60, 72, -9, -12, 1, 360, -600, 180, 120, -30, -15, 1, -2520, 5400, -2700, -1200, 180, 720, 180, -30, -45, -18, 1, 20160, -52920, 37800, 12600, -6300, -12600, -2100, 1260, 840, 1260, 252, -105, -63, -21, 1
Offset: 0
The first few rows of coefficients, with lengths given by A000041, are
0) 1;
1) 1;
2) -3, 1;
3) 12, -9, 1;
4) -60, 72, -9, -12, 1;
5) 360, -600, 180, 120, -30, -15, 1;
6) -2520, 5400, -2700, -1200, 180, 720, 180, -30, -45, -18, 1;
7) 20160, -52920, 37800, 12600, -6300, -12600, -2100, 1260, 840, 1260, 252, -105, -63, -21, 1;
8) -181440, 564480, -529200, -141120, 151200, 201600, 25200, -6300, -50400, -16800, -25200, -3360, 3360, 2520, 3360, 2016, 336, -105, -168, -84, -24, 1;
... .
The first few partition polynomials with monomials in reverse order to those of Abramowitz and Stegun (p. 831-2, see link in A000041) are
P_0 = 1
P_1(a_1)= 1 a_1
P_2(a_1,a_2) = -3 a_1^2 + 1 a_2
P_3(a_1,a_2,a_3) = 12 a_1^3 - 9 a_1 a_2 + 1 a_3
P_4(a_1,a_2,a_3,a_4) = -60 a_1^4 + 72 a_1^2 a_2 - 9 a_2^2 -12 a_1 a_3 + 1 a_4
P_5 = 360 a_1^5 - 600 a_1^3 a_2 + 180 a_1 a_2^2 + 120 a_1^2 a_3 - 30 a_2 a_3 - 15 a_1 a_4 + 1 a_5
P_6 = -2520 a_1^6 + 5400 a_1^4 a_2 - 2700 a_1^2 a_2^2 - 1200 a_1^3 a_3 + 180 a_2^3 + 720 a_1 a_2 a_3 + 180 a_1^2 a_4 - 30 a_3^2 - 45 a_2 a_4 - 18 a_1 a_5 + 1 a_6
P_7 = 20160 a_1^7 - 52920 a_1^5 a_2 + 37800 a_1^3 a_2^2 12600 a_1^4 a_3 + - 6300 a_1 a_2^3 - 12600 a_1^2 a_2 a_3 - 2100 a_1^3 a_4 + 1260 a_2^2 a_3 + 840 a_1 a_3^2 + 1260 a_1 a_2 a_4 + 252 a_1^2 a_5 - 105 a_3 a_4 - 63 a_2 a_5 - 21 a_1 a_6 + 1 a_7
P_8 = -181440 a_1^8 + 564480 a_1^6 a_2 - 529200 a_1^4 a_2^2 - 141120 a_1^5 a_3 + 151200 a_1^2 a_2^3 + 201600 a_1^3 a_2 a_3 + 25200 a_1^4 a_4 - 6300 a_2^4 - 50400 a_1 a_2^2 a_3 - 16800 a_1^2 a_3^2 - 25200 a_1^2 a_2 a_4 - 3360 a_1^3 a_5 + 3360 a_2 a_3^2 + 2520 a_2^2 a_4 + 3360 a_1 a_3 a_4 + 2016 a_1 a_2 a_5 + 336 a_1^2 a_6 - 105 a_4^2 - 168 a_3 a_5 - 84 a_2 a_6 - 24 a_1 a_7 + 1 a_8.
-
rows[n_] := {{1}}~Join~With[{s = 1/(1 + Sum[a[k] x^k/k!, {k, n}] + O[x]^(n+1))^2}, -Table[Expand@Coefficient[k! s, x^k Product[a[t], {t, p}]], {k, n}, {p, Reverse@Sort[Sort /@ IntegerPartitions[k]]}]/2];
rows[7] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)
A356145
Coefficients of the inverse refined Eulerian partition polynomials [E]^{-1}, partitional inverse to A145271. Irregular triangle read by row with lengths A000041.
Original entry on oeis.org
1, 1, -1, 1, 3, -4, 1, -15, 25, -4, -7, 1, 105, -210, 70, 60, -15, -11, 1, -945, 2205, -1120, -630, 70, 350, 126, -15, -26, -16, 1, 10395, -27720, 18900, 7875, -2800, -6930, -1638, 560, 455, 784, 238, -56, -42, -22, 1, -135135, 405405, -346500, -114345, 84700
Offset: 0
The first few rows of coefficients with monomials in reverse order to the partitions of Abramowitz and Stegun (link in A000041, pp. 831-2) are
0) 1;
1) 1;
2) -1, 1;
3) 3, -4, 1;
4) -15, 25, -4, -7, 1;
5) 105, -210, 70, 60, -15, -11, 1;
6) -945, 2205, -1120, -630, 70, 350, 126, -15, -26, -16, 1;
7) 10395, -27720, 18900, 7875, -2800, -6930, -1638, 560, 455, 784, 238, -56, -42, -22, 1;
8) -135135, 405405, -346500, -114345, 84700, 138600, 24255, -2800, -27300, -11025, -18900, -3780, 1575, 1344, 2142, 1596, 414, -56, -98, -64, -29, 1;
...
The first few partition polynomials are
E_0^{(-1)} = 1,
E_1^{(-1)} = a1,
E_2^{(-1)} = -a1^2 + a2,
E_3^{(-1)} = 3 a1^3 - 4 a1 a2 + a3,
E_4^{(-1)} = -15 a1^4 + 25 a1^2 a2 - 4 a2^2 - 7 a1 a3 + a4,
E_5^{(-1)} = 105 a1^5 - 210 a1^3 a2 + 70 a1 a2^2 + 60 a1^2 a3 - 15 a2 a3 - 11 a1 a4 + a5,
E_6^{(-1)} = -945 a1^6 + 2205 a1^4 a2 - 1120 a1^2 a2^2 - 630 a1^3 a3 + 70 a2^3 + 350 a1 a2 a3 + 126 a1^2 a4 - 15 a3^2 - 26 a2 a4 - 16 a1 a5 + a6,
E_7^{(-1)} = 10395 a1^7 - 27720 a1^5 a2 + 18900 a1^3 a2^2 + 7875 a1^4 a3 - 2800 a1 a2^3 - 6930 a1^2 a2 a3 - 1638 a1^3 a4 + 560 a2^2 a3 + 455 a1 a3^2 + 784 a1 a2 a4 + 238 a1^2 a5 - 56 a3 a4 - 42 a2 a5 - 22 a1 a6 + a7,
E_8^{(-1)} = -135135 a1^8 + 405405 a1^6 a2 - 346500 a1^4 a2^2 - 114345 a1^5 a3 + 84700 a1^2 a2^3 + 138600 a1^3 a2 a3 + 24255 a1^4 a4 - 2800 a2^4 - 27300 a1 a2^2 a3 - 11025 a1^2 a3^2 - 18900 a1^2 a2 a4 - 3780 a1^3 a5 + 1575 a2 a3^2 + 1344 a2^2 a4 + 2142 a1 a3 a4 + 1596 a1 a2 a5 + 414 a1^2 a6 - 56 a4^2 - 98 a3 a5 - 64 a2 a6 - 29 a1ma7 + a8,
... .
Example substitution identities:
With the permutahedra polynomials
P_1 = -a_1,
P_2 = 2*a_1^2 - a_2,
P_3 = -6*a_1^3 + 6*a_2*a_1 - a_3,
the refined Eulerian polynomials
E_1 = a_1,
E_2 = a_1^2 + a_2,
E_3 = a_1^3 + 4*a_1*a_2 + a_3,
the reciprocal tangent polynomials
RT_1 = -a_1,
RT_2 = -a_2 + a_1^2,
RT_3 = -a_3 + 2*a_1*a_2 - a_1^3,
the Lagrange inversion polynomials
L_1 = -a_1,
L_2 = 3*a_1^2 - a_2,
L_3 = -15*a_1^3 + 10*a_1a_2 - a_3,
then
E^{-1}_3 = P_3(L_1,L_2,L_3) = -6*(-a_1)^3 + 6*(3*a_1^2 - a_2)*(-a_1) - (-15*a_1^3 + 10*a_1*a_2 - a_3) = 3*a_1^3 - 4*a_2*a_1 + a_3,
E^{-1}_3 = RT_3(P_1,P_2,P_3) = -(-6*a_1^3 + 6*a_2*a_1 - a_3) + 2*(-a_1)*(2*a_1^2 - a_2) - (-a_1)^3 = 3*a_1^3 - 4*a_2*a_1 + a_3,
E{-1}_3(E_1,E_2,E_3) = 3*a_1^3 - 4*a_1*(a_1^2 + a_2) + (a_1^3 + 4*a_1*a_2 + a_3) = a_3.
-
rows[nn_] := {{1}}~Join~With[{s = 1/D[InverseSeries[x + Sum[c[k - 1] x^k/k!, {k, 2, nn}] + O[x]^(nn + 1)], x]}, Table[Coefficient[n! s, x^n Product[c[t], {t, p}]], {n, nn-1}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
rows[8] // Flatten (* Andrey Zabolotskiy, Feb 17 2024 *)
-
B. = PolynomialRing(ZZ)
A. = PowerSeriesRing(B)
f = x + a1*x^2/factorial(2) + a2*x^3/factorial(3) + a3*x^4/factorial(4) + a4*x^5/factorial(5) + a5*x^6/factorial(6) + a6*x^7/factorial(7) + a7*x^8/factorial(8) + a8*x^9/factorial(9) + a9*x^10/factorial(10)
g = f.reverse()
w = derivative(g,x)
I = 1 / w
# Added by Peter Luschny, Feb 17 2024:
for n, c in enumerate(I.list()[:9]):
print(f"E[{n}]", (factorial(n)*c).coefficients())
A356144
Coefficients of the set of partition polynomials [RT] = [P][E]; i.e., coefficients of polynomials resulting from using the set of refined Eulerian polynomials, [E], of A145271 as the indeterminates of the set of permutahedra polynomials, [P], of A133314. Irregular triangle read by rows with lengths given by A000041.
Original entry on oeis.org
1, -1, 1, -1, -1, 2, -1, 1, -3, 2, 1, -1, -1, 4, -4, -2, 5, -1, -1, 1, -5, 8, 2, -4, -2, -4, 5, 4, -4, -1, -1, 6, -12, -3, 8, 18, -6, -14, 13, 2, -16, 14, 0, -8, -1, 1, -7, 18, 3, -20, 0, -15, 8, 18, 57, 6, -54, -15, -12, 84, -30, -48, 14, 14, -8, -13, -1, -1, 8, -24, -4, 32, 51, -27, -16, -6, 171, -42, -177, 50, 90, -18, 456, -276, -246, -15, 30, 154, -42, 124, -166, -113, 42, 6, -21, -19, -1
Offset: 0
Arranged by rows, the coefficients are
0) 1;
1) -1;
2) 1, -1;
3) -1, 2, -1;
4) 1, -3, 2, 1, -1;
5) -1, 4, -4, -2, 5, -1, -1;
6) 1, -5, 8, 2, -4, -2, -4, 5, 4, -4, -1;
7) -1, 6, -12, -3, 8, 18, -6, -14, 13, 2, -16, 14, 0, -8, -1;
8) 1, -7, 18, 3, -20, 0, -15, 8, 18, 57, 6, -54, -15, -12, 84, -30, -48, 14, 14, -8, -13, -1;
. . .
The first few partition polynomials are
RT_0 = 1,
RT_1 = -a1,
RT_2 = a1^2 - a2,
RT_3 = -a1^3 + 2 a1 a2 - a3,
Rt_4 = a1^4 - 3 a1^2 a2 + 2 a2^2 + a1 a3 - a4,
RT_5 = -a1^5 + 4 a1^3 a2 - 4 a1 a2^2 - 2 a1^2 a3 + 5 a2 a3 - a1 a4 - a5,
RT_6 = a1^6 - 5 a1^4 a2 + 8 a1^2 a2^2 + 2 a1^3 a3 - 4 a2^3 - 2 a1 a2 a3 - 4 a1^2 a4 + 5 a3^2 + 4 a2 a4 - 4 a1 a5 - a6,
RT_7 = -a1^7 + 6 a1^5 a2 - 12*a1^3 a2^2 - 3 a1^4 a3 + 8 a1 a2^3 + 18 a1^2 a2 a3 - 6 a1^3 a4 - 14 a2^2 a3 + 13 a1 a3^2 + 2 a1 a2 a4 - 16 a1^2 a5 + 14 a3 a4 + 0 a2 a5 - 8 a1 a6 - a7,
RT_8 = a1^8 - 7 a1^6 a2 + 18 a1^4 a2^2 + 3 a1^5 a3 - 20 a1^2 a2^3 + 0 a1^3 a2 a3 - 15 a1^4 a4 + 8 a2^4 + 18 a1 a2^2 a3 + 57 a1^2 a3^2 + 6 a1^2 a2 a4 - 54 a1^3 a5 - 15 a2 a3^2 - 12 a2^2 a4 + 84 a1 a3 a4 - 30 a1 a2 a5 - 48 a1^2 a6 + 14 a4^2 + 14 a3 a5 - 8 a2 a6 - 13 a1 a7 - a8.
-
rows[nn_] := {{1}}~Join~With[{s = 1 / D[InverseSeries[Integrate[1/(1 + Sum[c[k] x^k/k!, {k, nn}] + O[x]^(nn+1)), x]], x]}, Table[Coefficient[n! s, x^n Product[c[t], {t, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
rows[7] // Flatten (* Andrey Zabolotskiy, Feb 17 2024 *)
-
B. = PolynomialRing(ZZ)
A. = PowerSeriesRing(B)
f = 1/(1 + a1*x + a2*x^2/factorial(2) + a3*x^3/factorial(3) + a4*x^4/factorial(4) + a5*x^5/factorial(5) + a6*x^6/factorial(6) + a7*x^7/factorial(7) + a8*x^8/factorial(8) + a9*x^9/factorial(9) + a10*x^10/factorial(10) )
g = integrate(f)
h = g.reverse()
w = derivative(h,x)
I = 1 / w
# Added by # Peter Luschny, Feb 17 2024:
# The list of coefficients in sparse format (i.e. without the zeros):
for n, c in enumerate(I.list()[:10]):
print(f"RT[{n}]", (factorial(n)*c).coefficients())
A354622
Irregular triangle read by rows: Refined 3-Narayana triangle. Coefficients of partition polynomials of A134264, a refined Narayana triangle enumerating noncrossing partitions, with all h_k other than h_0, h_3, h_6, ..., h_(3n), ... replaced by zero.
Original entry on oeis.org
1, 1, 3, 1, 9, 12, 1, 12, 6, 66, 55, 1, 15, 15, 105, 105, 455, 273, 1, 18, 18, 9, 153, 306, 51, 816, 1224, 3060, 1428, 1, 21, 21, 21, 210, 420, 210, 210, 1330, 3990, 1330, 5985, 11970, 20349, 7752, 1, 24, 24, 24, 12, 276, 552, 552, 276, 276, 2024, 6072, 3036, 6072, 506, 10626, 42504, 21252, 42504, 106260, 134596, 43263
Offset: 1
Triangle begins:
1;
1, 3;
1, 9, 12;
1, 12, 6, 66, 55;
1, 15, 15, 105, 105, 455, 273;
...
Row 1: G_3 = g_3
row 2: G_6 = g_6 + 3 g_3^2
row 3: G_9 = g_9 + 9 g_3 g_6 + 12 g_3^3
row 4: G_12 = g_12 + 12 g_3 g_9 + 6 g_6^2 + 66 g_3^2 g_6 + 55 g_3^4
row 5: G_15 = g_15 + 15 g_3 g_12 + 15 g_6 g_9 + 105 g_3^2 g_9 + 105 g_3 g_6^2
+ 455 g_3^3 g_6 + 273 g_3^5.
.
In the notation of Abramowitz and Stegun p. 831 with indices of the partitions above divided by 3 and partition indeterminates h_n denoted (n):
R_1 = (1);
R_2 = (2) + 3 (1)^2;
R_3 = (3) + 9 (1) (2) + 12 (1)^3;
R_4 = (4) + 12 (1) (3) + 6 (2)^2 + 66 (1)^2 (2) + 55 (1)^4;
R_5 = (5) + 15 (1) (4) + 15 (2) (3) + 105 (1)^2 (3) + 105 (1) (2)^2 + 455 (1)^3(2)
+ 273 (1)^5.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]
- F. Cachazo and B. Umbert, Connecting Scalar Amplitudes using The Positive Tropical Grassmannian, arXiv preprint arXiv:2205.02722 [hep-th], 2022.
- MathOverflow, Combinatorics of iterated composition of noncrossing partition polynomials, a question posed by Tom Copeland, 2022.
- Eric Weisstein's World of Mathematics, Dyck Path.
The length of row n is equal to
A000041(n).
Cf.
A001764,
A003408,
A004321,
A108767,
A125181,
A127537,
A134264,
A173020,
A179848,
A235534,
A338135.
-
Table[Binomial[Total[y], Length[y]-1] (Length[y]-1)! / Product[Count[y, i]!, {i, Max@@y}], {n, 8}, {y, Sort[Sort /@ IntegerPartitions[3n, n, Range[3, 3n, 3]]]}] // Flatten (* Andrey Zabolotskiy, Feb 19 2024, using Gus Wiseman's code for A134264 *)
-
\\ Compare with A134264
C(v)={my(n=vecsum(v), S=Set(v)); n!/((n-#v+1)!*prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!))}
row(n)=[C(3*Vec(p)) | p<-partitions(n)]
{ for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024
A355201
Normalized Schur self-convolution expansion coefficients K_{n+1}^n / n giving the coefficients of the Laurent series (compositionally) inverse to f(z) = c_0 z + c_1 + c_2 / z + c_3 / z^2 + ... . Irregular triangle for partition polynomials, with row lengths A000041(n) - 1 except for the first two, which are both of length 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 3, 1, 1, 6, 4, 2, 12, 6, 2, 4, 4, 1, 1, 10, 5, 10, 30, 10, 10, 10, 20, 10, 5, 5, 5, 1, 1, 15, 6, 30, 60, 15, 5, 60, 30, 60, 20, 15, 15, 30, 30, 15, 3, 6, 6, 6, 1, 1, 21, 7, 70, 105, 21, 35, 210, 70, 140, 35, 35, 105, 105, 105, 105, 35, 7, 42, 21, 21, 42, 42, 21, 7, 7, 7, 7, 1
Offset: 0
Triangle begins:
1) 1
2) 1
3) 1
4) 1, 1
5) 1, 1, 2, 1
6) 1, 3, 3, 3, 3, 1
7) 1, 6, 4, 2, 12, 6, 2, 4, 4, 1
8) 1, 10, 5, 10, 30, 10, 10, 10, 20, 10, 5, 5, 5, 1
...
The first few partition polynomials, with the monomials in the order of the partitions on p. 831 of Abramowitz and Stegun, are
b0 = 1 / a0
b1 = - a1 / a0
b2 = - a2
b3 = -(a1 a2 + a0 a3)
b4 = -(a1^2 a2 + a0 a2^2 + 2 a0 a1 a3 + a0^2 a4)
b5 = -(a1^3 a2+ 3 a0 a1 a2^2 + 3 a0 a1^2 a_3 + 3 a0^2 a2 a3 + 3 a0^2 a1 a4
+ a0^3 a_5)
b6 = -(a1^4 a2 + 6 a0 a1^2 a2^2 + 4 a0 a1^3 a3 + 2 a0^2 a2^3 + 12 a0^2 a1 a2 a3
+ 6 a0^2 a1^2 a4 + 2 a0^3 a3^2 + 4a0^3 a2 a4 + 4 a0^3 a1 a5 + a0^4 a6)
b7 = -(a1^5 a2 + 10 a_0 a1^3 a2^2 + 5 a0 a1^4 a3 + 10 a0^2 a1 a2^3
+ 30 a0^2 a1^2 a2 a3 + 10 a0^2 a1^3 a4 + 10 a0^3 a2^2 a3 + 10 a0^3 a1 a3^2
+ 20 a0^3 a1 a2 a4 + 10 a0^3 a1^2 a5 + 5 a0^4 a3 a4 + 5 a0^4 a2 a5
+ 5 a0^4 a1 a6 + a0^5 a7)
_____________________
- H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bulletin des Sciences Mathématiques, Volume 130, Issue 3, April-May 2006, pages 179-222.
- H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bulletin des Sciences Mathématiques, Volume 126, Issue 5, June 2002, pages 343-367.
- T. Copeland, One Matrix to Rule Them All: Schur self-Konvolution expansion Koefficients; inversion of Laurent and power series; and associahedra, noncrossing, and reciprocal partition polynomials, 2022.
- I. Schur, Identities in the theory of power series, American Journal of Mathematics, Volume 69, No. 1, Jan 1947, pages 14-26.
-
row[0] = row[1] = {1};
row[n_] := With[{s = Expand[Coefficient[Sum[c[k] x^k, {k, 0, n}]^(n-1), x, n] / (n-1)]}, Table[Coefficient[s, Product[c[t], {t, p}]], {p, Reverse[Sort[Sort /@ IntegerPartitions[n, {n-1}, Range[0, n]]]]}]];
Table[row[n], {n, 0, 8}] // Flatten (* Andrey Zabolotskiy, Feb 05 2023 *)
A350499
Unsigned coefficients of free moment partition polynomials determining the free cumulants from the free moments of free probability theory. Irregular triangle with row lengths given by A000041, n >= 1.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 4, 2, 10, 5, 1, 5, 5, 15, 15, 35, 14, 1, 6, 6, 3, 21, 42, 7, 56, 84, 126, 42, 1, 7, 7, 7, 28, 56, 28, 28, 84, 252, 84, 210, 420, 462, 132, 1, 8, 8, 8, 4, 36, 72, 72, 36, 36, 120, 360, 180, 360, 30, 330, 1320, 660, 792, 1980, 1716, 429
Offset: 1
Triangle begins:
1;
1, 1;
1, 3, 2;
1, 4, 2, 10, 5;
1, 5, 5, 15, 15, 35, 14;
...
___________
The first few free cumulants in terms of the free moments are
c_1 = m_1
c_2 = m_2 - m_1^2
c_3 = m_3 - 3 m_2 m_1 + 2 m_1^3
c_4 = m_4 - 2 m_2^2 - 4m_3 m_1 + 10 m_2 m_1^2 - 5 m_1^4
c_5 = m_5 - 5 m_2 m_3 - 5 m_4 m_1 + 15 m_2^2 m_1 + 15 m_3 m_1^2 - 35 m_2 m_1^3 + 14 m_1^5
___________
Conversely, from A134264, these free moments in terms of the free cumulants are
m_1 = c_1
m_2 = c_2 + c_1^2
m_3 = c_3 + 3 c_2 c_1 + c_1^3
m_4 = c_4 + + 2 c_2^2 + 4 c_3 c_1 + 6 c_2 c_1^2 + c_1^4
m_5 = c_5 + 5 c_2 c_3 + 5 c_4 c_1 + 10 c_2^2 c_1 + 10 c_3 c_1^2 + 10 c_2 c_1^3 + c_1^5
___________
- Tom Copeland, Ruling the inverse universe, the inviscid Hopf-Burgers evolution equation: Compositional inversion, free probability, associahedra, diff ids, integrable hierarchies, and translation, 2022
- MathOverflow, Combinatorics for the action of Virasoro / Kac-Schwarz operators: partition polynomials of free probability theory, a MO question posed by Tom Copeland, 2021.
- J. Zhou, Quantum deformation theory of the Airy curve and the mirror symmetry of a point, arXiv preprint arXiv:1405.5296 [math.AG], 2014.
Cf.
A000041,
A000108,
A001764,
A002293,
A006318,
A036040,
A060693,
A086810,
A088617,
A111785,
A127671,
A133437,
A133932,
A134685,
A134264,
A276850.
-
mv(n)={eval(Str("'m",n))}
Trm(m,v)={my(S=Set(v)); for(i=1, #S, my(x=S[i]); m=polcoef(m, #select(y->y==x, v), mv(x))); m}
Q(n)={polcoef(-x/serreverse(x*(1 + sum(k=1, n, -x^k*mv(k), O(x*x^n)))), n)}
row(n)={my(q=Q(n)); [Trm(q,Vec(v)) | v<-partitions(n)]}
{ for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
-
C(v)={my(n=vecsum(v), S=Set(v)); (n+#v-2)!/(n-1)!/prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!)}
row(n)=[C(Vec(p)) | p<-partitions(n)]
{ for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
A344678
Coefficients for normal ordering of (x + D)^n and for the unsigned, probabilist's (or Chebyshev) Hermite polynomials H_n(x+y).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 4, 6, 6, 12, 4, 3, 6, 1, 1, 5, 10, 10, 30, 10, 15, 30, 5, 15, 10, 1, 1, 6, 15, 15, 60, 20, 45, 90, 15, 90, 60, 6, 15, 45, 15, 1, 1, 7, 21, 21, 105, 35, 105, 210, 35, 315, 210, 21, 105, 315, 105, 7, 105, 105, 21, 1
Offset: 0
(x + D)^0 = 1,
(x + D)^1 = x + D,
(x + D)^2 = x^2 + 2 x D + 1 + D^2,
(x + D)^3 = x^3 + 3 x^2 D + 3 x + 3 x D^2 + 3 D + D^3,
(x + D)^4 = x^4 + 4 x^3 D + 6 x^2 + 6 x^2 D^2 + 12 x D + 4 x D^3 + 3 + 6 D^2 + D^4.
(x + D)^5 = x^5 + 5 x^4 D + 10 x^3 + 10 x^3 D^2 + 30 x^2 D + 10 x^2 D^3 + 15 x + 30 x D^2 + 5 x D^4 + 15 D + 10 D^3 + D^5
H_6(x + y) = x^6 + 6 x^5 y + 15 x^4 + 15 x^4 y^2 + 60 x^3 y + 20 x^3 y^3 + 45 x^2 + 90 x^2 y^2 + 15 x^2 y^4 + 90 x y + 60 x y^3 + 6 x y^5 + 15 + 45 y^2 + 15 y^4 + y^6
H_7(x + y) = x^7 + 7 x^6 y + 21 x^5 + 21 x^5 y^2 + 105 x^4 y + 35 x^4 y^3 + 105 x^3 + 210 x^3 y^2 + 35 x^3 y^4 + 315 x^2 y + 210 x^2 y^3 + 21 x^2 y^5 + 105 x + 315 x y^2 + 105 x y^4 + 7 x y^6 + 105 y + 105 y^3 + 21 y^5 + y^7
-
Last /@ CoefficientRules[#, {x, y}] & /@ Table[Simplify[(-y)^n (-2)^(-n/2) HermiteH[n, (x + 1/y)/Sqrt[-2]]], {n, 0, 7}] // Flatten (* Andrey Zabolotskiy, Mar 08 2024 *)
A338135
Irregular triangle read by rows: Row p gives number of non-overlapping clusters of 2q-plets joining 2p points on a circle, i.e., number of noncrossing partitions from A134264 with h_k for k odd replaced by zero.
Original entry on oeis.org
1, 1, 2, 1, 6, 5, 1, 8, 4, 28, 14, 1, 10, 10, 45, 45, 120, 42, 1, 12, 12, 6, 66, 132, 22, 220, 330, 495, 132, 1, 14, 14, 14, 91, 182, 91, 91, 364, 1092, 364, 1001, 2002, 2002, 429
Offset: 1
row 1: G_2 = g_2
row 2: G_4 = g_4 + 2 g_2^2
row 3: G_6 = g_6 + 6 g_2 g_4 + 5 g_2^3
row 4: G_8 = g_8 + 8 g_2 g_6 + 4 g_4^2 + 28 g_2^2 g_4 + 14 g_2^4
row 5: G_10 = g_10 + 10 g_2 g_8 + 10 g_4 g_6 + 45 g_2^2 g_6 + 45 g_2 g_4^2
+ 120 g_2^3 g_4 + 42 g_2^5
_____________
In the notation of Abramowitz and Stegun p. 831 with indices of the partitions above divided by 2;
R_1 = (1)
R_2 = (2) + 2 (1)^2
R_3 = (3) + 6 (1) (2) + 5 (1)^3
R_4 = (4) + 8 (1) (3) + 4 (2)^2 + 28 (1)^2 (2) + 14 (1)^4
R_5 = (5) + 10 (1) (4) + 10 (2) (3) + 45 (1)^2 (3) + 45 (1) (2)^2
+ 120 (1)^3 (2) + 42 (1)^5
______________
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar Diagrams, Comm. Math. Phys., 59, p. 35-51, Springer-Verlag, 1978, (link via Project Euclid).
- Freddy Cachazo and Bruno Giménez Umbert, Connecting Scalar Amplitudes using The Positive Tropical Grassmannian, arXiv:2205.02722 [hep-th], 2022.
- J. Novak and M. LaCroix, Three lectures on free probability, arXiv:1205.2097 [math.CO], 2012.
-
Table[(2 n)!/((2 n + 1 - Length@p)! Product[r!, {r, Last /@ Tally[p]}]), {n, 5}, {p, Sort[Sort /@ IntegerPartitions[n]]}] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 26, 19, 6, 1, 236, 170, 55, 10, 1, 2752, 1966, 645, 125, 15, 1, 39208, 27860, 9226, 1855, 245, 21, 1, 660032, 467244, 155764, 32081, 4480, 434, 28, 1, 12818912, 9049584, 3031876, 635124, 92001, 9576, 714, 36, 1, 282137824, 198754016, 66845340, 14180440, 2108085, 230097, 18690, 1110, 45, 1
Offset: 1
Matrix begins as
1;
1; 1;
4, 3, 1;
26, 19, 6, 1;
236, 170, 55, 10, 1;
2752, 1966, 645, 125, 15, 1;
-
# The function BellMatrix is defined in A264428. Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n=0, 1, -1), 9): MatrixInverse(%); # Peter Luschny, Jan 26 2018
-
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, If[n == 0, 1, -1]], rows = 12] // Inverse;
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
A295380
Number of canonical forms for separation coordinates on hyperspheres S_n, ordered by increasing number of independent continuous parameters.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 8, 5, 1, 6, 20, 22, 8, 1, 11, 49, 73, 46, 11, 1, 23, 119, 233, 206, 87, 15, 1, 46, 288, 689, 807, 485, 147, 19, 1, 98, 696, 1988, 2891, 2320, 1021, 236, 24, 1, 207, 1681, 5561, 9737, 9800, 5795, 1960, 356, 29, 1, 451, 4062, 15322, 31350, 38216, 28586, 13088, 3525, 520, 35, 1, 983, 9821, 41558, 97552, 139901, 127465, 74280, 27224, 5989, 730, 41, 1
Offset: 1
From _Petros Hadjicostas_, Jan 27 2018: (Start)
Triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
----------------------------------------------------------------
(S^1) 1,
(S^2) 1, 1,
(S^3) 2, 3, 1,
(S^4) 3, 8, 5, 1,
(S^5) 6, 20, 22, 8, 1,
(S^6) 11, 49, 73, 46, 11, 1,
(S^7) 23, 119, 233, 206, 87, 15, 1,
(S^8) 46, 288, 689, 807, 485, 147, 19, 1,
(S^9) 98, 696, 1988, 2891, 2320, 1021, 236, 24, 1,
(S^10) 207, 1681, 5561, 9737, 9800, 5795, 1960, 356, 29, 1,
...
(End)
- C. G. Bower, Transforms (2)
- S. Devadoss and R. C. Read, Cellular structures determined by polygons and trees, arXiv/0008145 [math.CO], 2000.
- S. L. Devadoss and R. C. Read, Cellular structures determined by polygons and trees, Ann. Combin., 5 (2001), 71-98.
- K. Schöbel and A. Veselov, Separation coordinates, moduli spaces, and Stasheff polytopes, arXiv:1307.6132 [math.DG], 2014.
- K. Schöbel and A. Veselov, Separation coordinates, moduli spaces and Stasheff polytopes, Commun. Math. Phys., 337 (2015), 1255-1274.
Comments