cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Petros Hadjicostas

Petros Hadjicostas's wiki page.

Petros Hadjicostas has authored 128 sequences. Here are the ten most recent ones:

A342405 a(n) = (27^n - 3*9^n - 3*12^n)/6 + 6^n.

Original entry on oeis.org

0, 45, 2268, 76221, 2245320, 62858025, 1723364748, 46836754821, 1268169391440, 34282547074305, 926123262507828, 25011175461289821, 675371104361586360, 18235844869321055385, 492377645105637260508, 13294313813660319607221, 358947876218708733778080
Offset: 1

Author

Petros Hadjicostas, Mar 10 2021

Keywords

Crossrefs

Column 3 of A342202.

Formula

From Chai Wah Wu, Mar 11 2021: (Start)
a(n) = 54*a(n-1) - 963*a(n-2) + 6966*a(n-3) - 17496*a(n-4) for n > 4.
G.f.: 9*x^2*(-324*x^2 - 18*x + 5)/((6*x - 1)*(9*x - 1)*(12*x - 1)*(27*x - 1)). (End)
a(n) == 0 (mod 81) for n >= 3. - Hugo Pfoertner, Mar 11 2021

A342397 Expansion of the o.g.f. (2*x^2 + 3*x + 2)*x/((x + 1)^2*(x - 1)^4).

Original entry on oeis.org

0, 2, 7, 18, 35, 62, 98, 148, 210, 290, 385, 502, 637, 798, 980, 1192, 1428, 1698, 1995, 2330, 2695, 3102, 3542, 4028, 4550, 5122, 5733, 6398, 7105, 7870, 8680, 9552, 10472, 11458, 12495, 13602, 14763, 15998, 17290, 18660, 20090, 21602, 23177, 24838, 26565, 28382, 30268, 32248, 34300, 36450
Offset: 0

Author

Petros Hadjicostas, Mar 10 2021

Keywords

Comments

One-half of the antidiagonal sums of array A220508.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2x^2+3x+2) x/((x+1)^2 (x-1)^4),{x,0,70}],x] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{0,2,7,18,35,62},70] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    /* First program */
    seq1(n)={my(x='x+O('x^n)); Vec((2*x^2 + 3*x + 2)*x/((x + 1)^2*(x - 1)^4), -n)}
    /* Second program (array M is A220508) */
    seq2(nn) = {my(M=matrix(nn+1, nn+1)); my(a=vector(nn+1)); for(n=1, nn+1, for(k=1, nn+1, M[n, k]=if(k == n, n^2-n, if(k < n, n^2-2*n+k, k^2-n)))); for(n=1, nn+1, a[n] = sum(k=1, n, M[n-k+1,k])/2); a}

Formula

a(n) = (n+1)*(1 - (-1)^n)/16 + (7/4)*(binomial(n+3, 3) - binomial(n+2, 2)).
a(n) = (A342362(n) - (n + 1))/4.
a(2*n) = A169607(n) and a(2*n + 1) = 2*A004126(n + 1).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5. - Chai Wah Wu, Mar 11 2021

A342202 T(n,k) = V(n,k)/k!, where V(n,k) = k^(n*k) - Sum_{t=1..k-1} binomial(k,t)*k^(n*(k-t))*V(n,t) for n, k >= 1; square array T read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 4, 0, 1, 24, 45, 0, 1, 112, 2268, 816, 0, 1, 480, 76221, 461056, 20225, 0, 1, 1984, 2245320, 152978176, 160977375, 632700, 0, 1, 8064, 62858025, 43083161600, 673315202500, 85624508376, 23836540, 0, 1, 32512, 1723364748, 11442561314816, 2331513459843750, 5508710472669120, 64363893844726, 1048592640, 0
Offset: 1

Author

Petros Hadjicostas, Mar 04 2021

Keywords

Comments

To prove Paul D. Hanna's formula for the row n o.g.f. A(x,n) = Sum_{m >= 1} T(n,m)*x^m, we use Leibniz's rule for the k-th derivative of a product of functions: dx^k(exp(k^n*x) * (1 - A(x,n)))/dx = Sum_{s=0..k} binomial(k,s) * d^s(exp(k^n*x))/dx^s * d^(k-s) (1 - A(x,n))/dx^(k-s) = k^(n*k) * exp(k^n*x) * (1 - Sum_{m>=1} T(n,m) * x^m) - Sum_{s=0..k-1} binomial(k,s) * k^(n*s) * exp(k^n*x) * (Sum_{m>=1} (m!/(m-(k-s))!) * T(n,m) * x^(m-(k-s))). The coefficient of x^k for exp(k^n*x) * (1 - A(x,n)) is obtained by setting x = 0 in the k-the derivative, and it is equal to k^(n*k) - Sum_{s=0..k-1} binomial(k,s) * k^(n*s) * (k-s)! * T(n,k-s) = k! * (k^(n*k)/k! - Sum_{s=0..k-1} k^(n*s)/s! * T(n,k-s)) = 0 because of the recurrence that T(n,k) satisfies.
To prove the formula below for T(n,k) that involves the compositions of k, we use mathematical induction on k. For k = 1, it is obvious. Assume it is true for all n and all m < k. Consider the compositions of k.
There is only one of size r = 1, namely k, and corresponds to the term k^(n*k)/k! in the recurrence T(n,k) = k^(n*k)/k! - Sum_{s=1..k-1} k^(n*s)/s! * T(n,k-s).
For the other compositions (s_1, ..., s_r) of k (of any size r >= 2), we group them according to the their last element s_r = s in {1, 2, ..., k - 1}, which gives rise to the factor k^(n*s)/s! = (Sum_{i=1..r} s_i)^(n*s_r)/s_r!. Using the inductive hypothesis, we substitute the expression for T(n,k-s) in the recurrence T(n,k) = k^(n*k)/k! - Sum_{s=1..k-1} k^(n*s)/s! * T(n,k-s). Each term in the expression for T(n,k-s) corresponds to a composition of k - s and is postmultiplied by k^(n*s)/s! = (Sum_{i=1..r} s_i)^(n*s_r)/s_r!. We thus get a term in the expression for T(n,k) that corresponds to a composition of the form (composition of k - s) + s, and the sign of this term is (-1)^((size of composition of k - s) + 1). The rest of the proof follows easily.

Examples

			Square array T(n,k) (n, k >= 1) begins:
  1,    0,        0,              0,                   0, ...
  1,    4,       45,            816,               20225, ...
  1,   24,     2268,         461056,           160977375, ...
  1,  112,    76221,      152978176,        673315202500, ...
  1,  480,  2245320,    43083161600,    2331513459843750, ...
  1, 1984, 62858025, 11442561314816, 7570813415735296875, ...
  ...
		

Crossrefs

Cf. A027834, A027835, A059153 (shifted column 2), A342405 (column 3).
Shifted rows: A000007 (row 1), A107668 (row 2), A107675 (row 3), A304394 (row 4), A304395 (row 5).

Programs

  • PARI
    /* The recurrence for V(n,k) is due to Valery A. Liskovets. See his 1971 paper. A second program that implements the formula above involving the compositions of k appears in the links and was written by Michel Marcus. */
    V(n,k) = k^(n*k) - sum(t=1, k-1, binomial(k, t)*k^(n*(k-t))*V(n,t));
    T(n,k) = V(n,k)/k!

Formula

T(n,k) = k^(n*k)/k! - Sum_{s=1..k-1} k^(n*s)/s! * T(n,k-s).
For each n >= 1, the row n o.g.f. A(x,n) = Sum_{k >= 1} T(n,k)*x^k satisfies [x^k] (exp(k^n*x) * (1 - A(x,n))) = 0 for each k >= 1. (This is Paul D. Hanna's formula from the shifted rows 2-5: A107668, A107675, A304394, A304395.)
A027834(k) = T(2, k)*k! + Sum_{t=1..k-1} binomial(k-1, t-1) * T(2, k-t) * (k-t)! * A027834(t), where A027834(k) = number of strongly connected k-state 2-input automata. (See Theorem 2 in Valery A. Liskovets's 1971 paper.)
T(n,k) = Sum_{r=1..k} (-1)^(r-1) * Sum_{s_1, ..., s_r} (1/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(n*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = k. (Thus the second sum is over all ordered partitions (i.e., compositions) of k.)
T(n,k=1) = 1 and T(n,k=2) = 2^n*(2^(n-1) - 1) = A059153(n-2) (with A059153(-1) := 0).
T(n,k=3) = (27^n - 3*9^n - 3*12^n)/6 + 6^n.
T(n,k=4) = 256^n/24 - (5/12)*64^n - 108^n/6 + 32^n/2 + 36^n/2 + 48^n/2 - 24^n.

A342362 Expansion of the o.g.f. (1 + 8*x + 10*x^2 + 8*x^3 + x^4)/((1 - x)^4*(1 + x)^2).

Original entry on oeis.org

1, 10, 31, 76, 145, 254, 399, 600, 849, 1170, 1551, 2020, 2561, 3206, 3935, 4784, 5729, 6810, 7999, 9340, 10801, 12430, 14191, 16136, 18225, 20514, 22959, 25620, 28449, 31510, 34751, 38240, 41921, 45866, 50015, 54444, 59089, 64030, 69199, 74680, 80401, 86450, 92751, 99396, 106305, 113574
Offset: 0

Author

Petros Hadjicostas, Mar 09 2021

Keywords

Comments

Antidiagonal sums of square array A342354.

Crossrefs

Cf. A342354.

Programs

  • Julia
    [div((n + 1)*(14*(n + 1)^2 - 3*(-1)^n + 1),12) for n in 0:50] |> println # Bruno Berselli, Mar 09 2021

Formula

a(n) = (n + 1)/4*(5 - (-1)^n) - 7*binomial(n + 2, 2) + 7*binomial(n + 3, 3).
a(n) = (n + 1)*(14*(n + 1)^2 - 3*(-1)^n + 1)/12. - Bruno Berselli, Mar 09 2021

A342354 M(n,k) = 2*n^2 + 2*k + 1 for 0 <= k <= n and M(n,k) = 2*k^2 + 4*k - 2*n + 1 for 0 <= n <= k; square array M(n,k) read by ascending antidiagonals (n, k >= 0).

Original entry on oeis.org

1, 3, 7, 9, 5, 17, 19, 11, 15, 31, 33, 21, 13, 29, 49, 51, 35, 23, 27, 47, 71, 73, 53, 37, 25, 45, 69, 97, 99, 75, 55, 39, 43, 67, 95, 127, 129, 101, 77, 57, 41, 65, 93, 125, 161, 163, 131, 103, 79, 59, 63, 91, 123, 159, 199, 201, 165, 133, 105, 81, 61, 89, 121, 157, 197, 241, 243, 203, 167, 135, 107, 83, 87, 119, 155, 195, 239, 287
Offset: 0

Author

Petros Hadjicostas, Mar 08 2021

Keywords

Comments

This is a square array defined by J. M. Bergot in A005917 (originally by mistake in A047926). Here is the edited description of the array by this contributor.
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals A005917(n+1).

Examples

			Square array M(n,k) (n, k >= 0) begins:
   1,  7, 17, 31, 49, 71, 97, 127, ...
   3,  5, 15, 29, 47, 69, 95, 125, ...
   9, 11, 13, 27, 45, 67, 93, 123, ...
  19, 21, 23, 25, 43, 65, 91, 121, ...
  33, 35, 37, 39, 41, 63, 89, 119, ...
  51, 53, 55, 57, 59, 61, 87, 117, ...
  73, 75, 77, 79, 81, 83, 85, 115, ...
  ...
The triangular array T(n,k) = M(n-k,k) (with rows n >= 0 and columns k = 0..n) is obtained by reading array M by ascending antidiagonals:
   1;
   3,  7;
   9,  5, 17;
  19, 11, 15, 31;
  33, 21, 13, 29, 49;
  51, 35, 23, 27, 47, 71;
  73, 53, 37, 25, 45, 69, 97;
  99, 75, 55, 39, 43, 67, 95, 127;
  ...
		

Crossrefs

Antidiagonal sums are in A342362.

Programs

  • PARI
    tabl(nn) = {my(M=matrix(nn+1,nn+1)); for(n=1, nn+1, for(k=1, nn+1, M[n,k]=if(k == n, 2*n^2-2*n+1, if(k < n, 2*n^2-4*n+2*k+1, 2*k^2-2*n+1)))); M}

Formula

O.g.f. for rectangular M: (x^4*y^4 + 4*x^3*y^4 + 3*x^4*y^2 - 18*x^3*y^3 - x^2*y^4 + 8*x^3*y^2 + 4*x^2*y^3 - 10*x^3*y + 10*x^2*y^2 - 2*x*y^3 + 8*x^2*y + 4*x*y^2 + 3*x^2 - 18*x*y - y^2 + 4*y + 1)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2).
O.g.f. for triangular T: (x^8*y^4 + 4*x^7*y^4 - x^6*y^4 - 18*x^6*y^3 + 3*x^6*y^2 + 4*x^5*y^3 + 8*x^5*y^2 - 2*x^4*y^3 + 10*x^4*y^2 - 10*x^4*y + 4*x^3*y^2 + 8*x^3*y - x^2*y^2 - 18*x^2*y + 3*x^2 + 4*x*y + 1)/((1 - x)^3*(1 - x*y)^3*(1 - x^2*y)^2).

A342234 a(n) = (27^n - 9^n)/2 - 12^n + 6^n.

Original entry on oeis.org

0, 3, 216, 7965, 243000, 6903873, 190505196, 5192233245, 140764942800, 3807455329593, 102881965757076, 2778771947174325, 75038262510065400, 2026169325431888913, 54708199287259567356, 1477140843778461200205, 39883035730488375376800, 1076844754605007952329833
Offset: 0

Author

Petros Hadjicostas, Mar 06 2021

Keywords

Comments

For n >= 1, a(n) is the number of deterministic, completely-defined, initially-connected finite automata with n inputs and 3 unlabeled states. A020522 counts similar automata with n inputs and 2 unlabeled states.
According to a comment by Nelma Moreira in A006689 and A006690, the number of such automata with N inputs and M unlabeled states is Sum (Product_{i=1..M-1} i^(f_i - f_{i-1} - 1)) * M^(M*N - f_{M-1} - 1), where the sum is taken over integers f_1, ..., f_{M-1} satisfying 0 <= f_1 < N and f_{i-1} < f_{i} < i*N for i = 2..M-1. (See Theorem 8 in Almeida, Moreira, and Reis (2007). The value of f_0 is not relevant.) For this sequence we have M = 3 unlabeled states, for A020522 we have M = 2 unlabeled states, for A006689 we have N = 2 inputs, and for A006690 we have N = 3 inputs.
A similar formula for the number of such automata with N inputs and M unlabeled states was given by Robinson (1985, Eq. (2.3) upon division by (p-1)!). It is Sum_{r=1..M} (-1)^(r-1) * Sum_{k_1,...,k_r} (k_1/(Product_{i=1..r} k_i!)) * Product_{j=1..r} (Sum_{i=1..j} k_i)^(N*k_j), where the second sum is over all compositions (k_1,...,k_r) of length r of M. (A composition of length r of M is an ordered partition (k_1,...,k_r) with k_i >= 1 for i = 1..r and Sum_{i=1..r} k_i = M.)
Both formulas with N = n and M = 3 give a(n) = (27^n - 9^n)/2 - 12^n + 6^n.
In Liskovets (2006, Eq. (11), p. 546), a(n) equals H_N(M) = h_N(M)/(M-1)! with N = n and M = 3. The sequence h_N(M) satisfies the recurrence h_N(M) = M^(N*M) - Sum_{t=1..M-1} binomial(M-1, t-1) * M^(N*(M-t)) * h_N(t) with h_N(1) = 1. A recurrence for H_N(M) = h_N(M)/(M-1)! originally appeared in Liskovets (1969, Eq. (3), p. 17, denoted by h_{n,r}).

Crossrefs

Programs

  • PARI
    lista(nn) = {my(h=matrix(nn+3,nn+3)); my(H=vector(nn+1)); for(N=1, nn, for(M=1, nn, h[N,M] = if(M==1, 1,  M^(N*M)-sum(t=1,M-1, binomial(M-1, t-1)*M^(N*(M-t))*h[N,t]))));
    for(N=1, nn+1, H[N] = if(N==1, 0, h[N-1,3]/2)); H;}

Formula

G.f.: 3*x*(1 + 18*x - 270*x^2)/(1 - 54*x + 963*x^2 - 6966*x^3 + 17496*x^4). - Stefano Spezia, Mar 08 2021

A342195 a(n) = Sum_{k=0..floor(n/2)} A323833(n,k) if A323833 is read as a triangle.

Original entry on oeis.org

0, 1, 1, -5, -8, 61, 130, -1385, -3680, 50521, 160816, -2702765, -10026368, 199360981, 844583440, -19391512145, -92369507840, 2404879675441, 12722897618176, -370371188237525, -2154662195222528, 69348874393137901, 440001333689382400, -15514534163557086905, -106615331831035289600, 4087072509293123892361
Offset: 0

Author

Petros Hadjicostas, Mar 04 2021

Keywords

Comments

Because A323833(n,n/2) = 0 for n even (if A323833 is read as a triangle), we also have a(n) = Sum_{k=0..ceiling((n-1)/2)} A323833(n,k).

Examples

			a(3) = -2 - 3 = -5.
a(4) = -5 - 3 = -8.
a(5) = 16 + 21 + 24 = 61.
a(6) = 61 + 45 + 24 = 130.
a(7) = -272 - 333 - 378 - 402 = -1385.
		

Crossrefs

Programs

  • PARI
    {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111
    c(n) = if(n==0, 0, (-1)^(n+floor(n/2))*b(n))
    a(n) = sum(k=0, floor(n/2), sum(i=0, n-k, binomial(n-k,i)*(-1)^(k+i)*c(k+i)))

Formula

a(n) = Sum_{k=0..floor(n/2)} A323833(n-k,k) if A323833 is read as a square array (by upwards antidiagonals).
a(2*n+1) = -A028296(n+1).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} binomial(n-k,i) * (-1)^(k+i) * A163747(k+i).

A342161 Expansion of the exponential generating function (tanh(x) - sech(x) + 1) * exp(x).

Original entry on oeis.org

0, 1, 3, 4, -3, -14, 63, 274, -1383, -7934, 50523, 353794, -2702763, -22368254, 199360983, 1903757314, -19391512143, -209865342974, 2404879675443, 29088885112834, -370371188237523, -4951498053124094, 69348874393137903, 1015423886506852354, -15514534163557086903
Offset: 0

Author

Petros Hadjicostas, Mar 03 2021

Keywords

Crossrefs

Programs

  • Maple
    series((2*exp(x)-2)/(exp(-2*x)+1),x,30):seq(n!*coeff(%,x,n),n=0..24); # Peter Luschny, Mar 05 2021
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(serlaplace((-1/cosh(x) + tanh(x) + 1)*exp(x)))) \\ Michel Marcus, Mar 05 2021
    
  • SageMath
    def A323834List(prec):
        R. = PowerSeriesRing(QQ, default_prec=prec)
        f = (2*exp(2*x)*(exp(x) - 1))/(exp(2*x) + 1)
        return f.egf_to_ogf().list()
    print(A323834List(25)) # Peter Luschny, Mar 05 2021

Formula

a(n) = A323834(n, 0).
a(n) = n! [x^n] (tanh(x) - sech(x) + 1) * exp(x).
a(n) = Sum_{i=1..n} binomial(n,i) * (-1)^floor((i-1)/2) * A000111(i).

A341941 T(n,k) is the number of unlabeled even graphs with n vertices and k edges; irregular triangular array T read by rows (n >= 0, 0 <= k <= n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 3, 4, 4, 6, 6, 6, 6, 4, 4, 3, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 3, 4, 7, 9, 16, 18, 25, 24, 29, 26, 25, 16, 15, 8, 5, 4, 3, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 3, 4, 7, 13, 21, 36, 58, 83, 118, 156, 189, 213, 228, 213, 189, 156, 118, 83, 58, 36, 21, 13, 7, 4, 3, 1, 1, 1, 0, 0, 1
Offset: 0

Author

Petros Hadjicostas, Feb 24 2021

Keywords

Comments

Even graphs are colloquially known as Euler graphs (even though, strictly speaking, that is not correct).
Robinson (1969, Section 4, p. 153) actually calculates the o.g.f. of row n=6 of this irregular triangle T(n,k), but he is discouraged by the asymmetry of the coefficients of the polynomial. (The n-th row of this triangle T(n,k) is symmetric only when n is odd). He states: "The processes of Section 1 can be extended brutally to accommodate the line [edge] parameter, but the result does not promise to be pleasing."

Examples

			From _Joerg Arndt_, Feb 05 2010: (Start)
The A002854(4) = 3 even graphs on four nodes are:
   1)  o o     2)  o-o     3)  o-o
       o o         |/          | |
                   o o         o-o
(End)
From above, we see that T(4,0) = 1, T(4,1) = T(4,2) = 0, T(4,3) = 1, T(4,4) = 1, and T(4,5) = T(4,6) = 0.
The even graphs corresponding to T(5,0) = T(5,3) = T(5,4) = T(5,5) = T(5,6) = T(5,7) = T(5,10) = 1 appear in Fig. 1.4.3 in Harary and Palmer (p. 15). The last two even graphs, however, corresponding to k = 7 and k = 10, are each missing edges!
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n*(n-1)/2) begins:
n=0: 1;
n=1: 1;
n=2: 1, 0
n=3: 1, 0, 0, 1;
n=4: 1, 0, 0, 1, 1, 0, 0;
n=5: 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1;
n=6: 1, 0, 0, 1, 1, 1, 3, 2, 2, 1, 2, 1, 1, 0, 0, 0;
n=7: 1, 0, 0, 1, 1, 1, 3, 4, 4, 6, 6, 6, 6, 4, 4, 3, 1, 1, 1, 0, 0, 1;
...
Row n=8 is 1, 0, 0, 1, 1, 1, 3, 4, 7, 9, 16, 18, 25, 24, 29, 26, 25, 16, 15, 8, 5, 4, 3, 1, 1, 0, 0, 0, 0.
Row n=9 is 1, 0, 0, 1, 1, 1, 3, 4, 7, 13, 21, 36, 58, 83, 118, 156, 189, 213, 228, 213, 189, 156, 118, 83, 58, 36, 21, 13, 7, 4, 3, 1, 1, 1, 0, 0, 1.
Row n=10 is 1, 0, 0, 1, 1, 1, 3, 4, 7, 13, 26, 43, 91, 152, 290, 473, 777, 1157, 1711, 2236, 2846, 3255, 3557, 3493, 3295, 2785, 2275, 1662, 1173, 742, 475, 258, 151, 79, 44, 19, 13, 6, 3, 1, 1, 0, 0, 0, 0, 0.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973. [See Fig. 1.4.3 (p. 15, some graphs have typos) and p. 114, Eq. (4.7.1), for Sum_{k=0..n*(n-1)/2} T(n,k) = A002854(n).]

Crossrefs

Row sums are in A002854.

Programs

  • Maple
    See the links.

Formula

Conjecture (due to Peter Luschny): Sum_{k=0}^{n*(n-1)/2} (-1)^k*T(n,k) = A263626(n).
T(n,k) = T(n,n*(n-1)/2 - k) when n is odd (because the complement of an even graph is even when n is odd).
T(n,n*(n-1)/2) = 1 if n is odd.
T(n,n*(n-2)/2) = 1 while T(n,k) = 0 for n*(n-2)/2 + 1 <= k <= n*(n-1)/2 when n is even (because an even graph with an even n number of vertices can have at most n*(n-2)/2 edges).
Write an integer partition a of n into frequency or multiplicity notation: a = Sum_{i=1}^n i*a[i], where 0 <= a[i] <= n for i = 1..n. Following Liskovec (1970, p. 39), let a! = Product_{i=1}^n a[i]! and pi(a) = Product_{i=1}^n i^a[i]. Let also K(a) = Sum_{i=1}^n a[i] (p. 42).
For an integer partition a of n and an integer partition b of r, let a[i] = 0 for i = (n+1)..r, if r > n, and b[i] = 0 for i = (r+1)..n, if n > r. Define a + b = [a[i]+b[i], i=1..max(r,n)].
In the products and sums below, empty partitions are allowed, and empty products are by definition equal to 1.
Define the product p0(a,x) = (Product_{1 <= s < m <= n} (1 + x^lcm(s,m))^(gcd(s,m)*a[s]*a[m])) * (Product_{s=1..n} (1 + x^s)^(s*binomial(a[s],2) + floor((s-1)/2)*a[s])) * (Product_{s even in [1..n]} (1 + x^(s/2))^a[s]) (p. 40).
For an integer n, let alpha(n) = 2^A007814(n) (p. 43). (We actually only need the exponent A007814(n) for comparison, but this is how Liskovec defines it.)
For integer partitions a of n and b of r, define the product p0(+/-)(a,b,x) = (Product_{s=1..n, m=1..r, alpha(s) > alpha(m)} (1 + x^lcm(s,m))^(gcd(s,m)*a[s]*b[m])) * Product_{s=1..n, m=1..r, alpha(s) <= alpha(m)} (1 - x^lcm(s,m))^(gcd(s,m)*a[s]*b[m])) (p. 43).
For an integer partition a of n, define the product p0(-)(a,x) = (Product_{1 <= s < m <= n, alpha(s) = alpha(m)} (1 + x^lcm(s,m))^(gcd(s,m)*a[s]*a[m])) * (Product_{1 <= s < m <= n, alpha(s) <> alpha(m)} (1 - x^lcm(s,m))^(gcd(s,m)*a[s]*a[m])) * (Product_{s=1..n} (1 + x^s)^(s*binomial(a[s],2) + floor((s-1)/2)*a[s])) * (Product_{s even in [1..n]} (1 - x^(s/2))^a[s]) (p. 43).
Then the o.g.f. of row n is Sum_{k=0..n*(n-1)/2} T(n,k)*x^k = Sum_{t=0..n, a partition of t, b partition of n-t} 2^(-K(a+b))/(a! * b! * pi(a+b)) * p0(a,x) * p0(+/-)(a,b,x) * p0(-)(b,x) (p. 42). (When t = 0, partition a of t is empty and b is a partition of n; similarly, when t = n, partition b of n-t is empty and a is a partition of n.)

A341743 T(n,k) is the number of labeled Eulerian graphs with n vertices and k edges (according to Harary and Palmer) or the number of labeled connected Eulerian graphs with n vertices and k edges (according to Mallows and Sloane); irregular triangle T, read by rows (n >= 0 and 0 <= k <= n*(n-1)/2).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 12, 15, 10, 0, 0, 1, 0, 0, 0, 0, 0, 0, 60, 180, 195, 120, 90, 60, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 360, 1890, 3675, 4830, 5061, 4410, 3255, 1935, 805, 252, 105, 35, 0, 0, 1
Offset: 0

Author

Petros Hadjicostas, Feb 18 2021

Keywords

Comments

The value T(0,0) = 0 has no physical meaning. It is there because it makes the formula for the bivariate e.g.f.-o.g.f. (shown below) work.
Since T(n,k) counts even connected graphs with n vertices and k edges, for n >= 2, each vertex must have at least two edges, so k >= n. Hence, T(n,k) = 0 for 0 <= k < n.
We have T(n,n) = (n-1)!/2 for n >= 3 because T(n,n) counts the different labelings of cyclic graphs with n vertices and n edges, and we have (n-1)! cyclic permutations of the numbers 1, 2, ..., n. We divide by 2 because we get the same labeling if we flip the cyclic graph over (like a bracelet).
We have T(n, n*(n-1)/2) = 1, if n is odd, because the complete graph on n vertices is even (each vertex has degree n-1) and has only one non-isomorphic labeling.
We have T(n, n*(n-1)/2 - s) = 0 for s = 0, 1, 2, ..., (n/2)-1, if n is even, because in an even graph with n vertices we cannot have more than n*(n-2)/2 = n*(n-1)/2 - n/2 edges.
Finally, we have T(n, n*(n-2)/2) = A001147(n/2), if n is even >= 4, because any labeling in an even graph with n vertices and n*(n-2)/2 edges corresponds to a perfect matching in a complete graph with n vertices (by considering the pairs of vertices that are not connected).
See the comments for A058878 about the different (and sometimes confusing) terminology regarding even and (connected or not) Euler graphs.

Examples

			Irregular triangle T(n,k) (with rows n >= 0 and columns k = 0..n*(n-1)/2) begins
  0;
  1;
  0, 0;
  0, 0, 0, 1;
  0, 0, 0, 0, 3,  0,  0;
  0, 0, 0, 0, 0, 12, 15,  10,   0,   0,  1;
  0, 0, 0, 0, 0,  0, 60, 180, 195, 120, 90, 60, 15, 0, 0, 0;
  ...
T(5,5) = 12 because we have (5-1)!/2 = 12 non-isomorphic labelings of the following Eulerian graph with 5 vertices and 5 edges:
        *
       /  \
      /    \
     /      \
    *        *
     \      /
      \    /
       *--*
T(5,6) = 15 because we have 5*3 = 15 non-isomorphic labelings of the following Eulerian graph with 5 vertices and 6 edges:
         *______*
        /|\    /
       / | \  /
      *  |  \/
       \ |  *
        \|
         *
In the above graph, we have 5 choices for the vertex that is common to both triangles and using the other 4 numbers 1, 2, 3, 4 we have the following 3 possible labelings of the other 4 vertices: {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}.
T(5,7) = 10 because we have C(5,2) = 10 non-isomorphic labelings of the following Eulerian graph with 5 vertices and 7 edges:
V = {a,b,c,d,e} and E = {{a,b}, {a,c}, {a,d}, {a,e}, {b,c}, {b,d}, {b,e}}.
T(5,10) = 1 because all labelings of the complete graph with 5 vertices (and C(5,2) = 10 edges) are isomorphic.
There are no other (unlabeled) Eulerian graphs with 5 vertices: A003049(5) = 4. (In the name of A003049, the phrase "connected Euler graphs" is according to Mallows and Sloane (1975). According to Harary and Palmer (1973), we only need to say "Euler graphs" because, for them, an Euler graph is connected and even.)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973; see Eqs. (1.4.7), (1.4.18), and (1.4.19) on pp. 11-16.

Programs

  • Maple
    # Slow program based on Eqs. (1.4.7), (1.4.18), and (1.4.19) in Harary and Palmer (1973).
    w := proc(n, y) local m: expand(simplify(2^(-n)*(y + 1)^(1/2*n*(n - 1))*add(binomial(n, m)*((1 - y)/(y + 1))^(m*(n - m)), m = 0 .. n))): end proc:
    u := proc(x, y, M) local n: add(w(n, y)*x^n/n!, n = 0 .. M): end proc:
    T := proc(n, k) coeftayl(log(u(x, y, n + 2)), [x, y] = [0, 0], [n, k])*n!: end proc:
    # Another, slightly faster, program based on one of the recurrences:
    S := proc(n, k) local s, t: add(binomial(n, s)*add((-1)^t*binomial(s*(n - s), t)*binomial(binomial(s, 2) + binomial(n - s, 2), k - t), t = 0 .. k), s = 0 .. n)/2^n: end proc: # A058878
    T := proc(n, k) local x, s, t: option remember: if n = 0 then x := 0: end if: if 1/2*n*(n - 1) < k then x := 0: end if: if 1 <= n and 0 <= k and k <= 1/2*n*(n - 1) then x := S(n, k) - add(add(binomial(n - 1, s)*T(s + 1, t)*S(n - 1 - s, k - t), t = 0 .. k), s = 0 .. n - 2): end if: x: end proc:
    # Third program based on another recurrence (the S(n,k) is as above):
    T1 := proc(n, k) local x, s, t: option remember: if k = 0 and (n = 0 or 2 <= n) then x := 0: end if: if n = 1 and k = 0 then x := 1: end if; if 1/2*n*(n - 1) < k then x := 0: end if: if 2 <= n and 1 <= k and k <= 1/2*n*(n - 1) then x := S(n, k) - add(add((t + 1)*binomial(n, s)*T1(s, t + 1)*S(n - s, k - 1 - t)/k, t = 0 .. k - 2), s = 0 .. n) - add(binomial(n, s)*T1(s, k), s = 0 .. n - 1): end if: x: end proc:
  • Mathematica
    S[n_, k_] := S[n, k] = Sum[Binomial[n, s]*Sum[(-1)^t* Binomial[s*(n-s), t]*Binomial[Binomial[s, 2] + Binomial[n-s, 2], k-t], {t, 0, k}], {s, 0, n}]/2^n;
    T[n_, k_] := T[n, k] = If[n == 0 || k > n(n-1)/2, 0, S[n, k] - Sum[Binomial[n-1, s]*T[s+1, t]*S[n-1-s, k-t], {t, 0, k}, {s, 0, n-2}]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n(n-1)/2}] // Flatten (* Jean-François Alcover, Feb 14 2023, after 2nd Maple program *)

Formula

Sum_{k=0..n} T(n,k) = A033678(n) for n >= 1.
Bivariate e.g.f.-o.g.f.: Sum_{n,k>=0} T(n,k)*(x^n/n!)*y^k = log(Sum_{n,k>=0} A058878(n,k)*(x^n/n!)*y^k) = log(Sum_{n >= 0} (x^n/n!)*[o.g.f. of n-th row of A058878](y)).
Sum_{s=0..n} Sum_{t=0..k} binomial(n,s) * T(s+1,t) * A058878(n-s,k-t) = A058878(n+1,k) for n >= 0 and 0 <= k <= n*(n+1)/2.
Sum_{s=0..n} Sum_{t=0..k} ((t+1)/(k+1)) * binomial(n,s) * T(s,t+1) * A058878(n-s,k-t) = A058878(n,k+1) for n >= 2 and 0 <= k <= n*(n-1)/2 - 1
T(n,k) = A058878(n,k) - Sum_{s=0..n-2} Sum_{t=0..k} binomial(n-1,s) * T(s+1,t) * A058878(n-1-s,k-t) for n >= 1 and 0 <= k <= n*(n-1)/2, and T(n,k) = 0 otherwise.
T(n,k) = A058878(n,k) - Sum_{s=0..n} Sum_{t=0..k-2} ((t+1)/(k+1)) * binomial(n,s) * T(s,t+1) * A058878(n-s,k-1-t) - Sum_{s=0..n-1} binomial(n,s) * T(s,k) for n >= 2 and 1 <= k <= n*(n-1)/2 (with T(1,0) = 1 and T(n,k) = 0 otherwise).
T(n,k) = 0 for n >= 2 and 0 <= k <= n-1.
T(n,n) = A001710(n-1) = (n-1)!/2 for n >= 3.
Conjecture: T(n,n+1) = n!*(n-4)/8 = 15*A062199(n-5) for n >= 4 (with A062199(-1) = 0).
T(n, n*(n-1)/2) = 1 if n is odd.
T(n, k) = 0 if n is even and n*(n-1)/2 - n/2 + 1 <= k < n*(n-1)/2.
T(n, n*(n-2)/2) = A001147(n/2) if n is even >= 4.