A033678 Number of labeled Eulerian graphs with n nodes.
1, 0, 1, 3, 38, 720, 26614, 1858122, 250586792, 66121926720, 34442540326456, 35611003057733928, 73321307277341501168, 301201690357187097528960, 2471354321681605983102370864, 40525241311304939167532163726672
Offset: 1
References
- F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 12, Eq. (1.4.6).
- E. M. Palmer in L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 385ff.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..50
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
- math.stackexchange.com, Is it possible disconnected graph has euler circuit? [sic], August 30, 2015.
- Ronald C. Read, Euler graphs on labelled nodes, Canadian Journal of Mathematics, 14 (1962), 482-486; see the discussion in Section 4, following Eq. (8) on p. 486.
Programs
-
Maple
A033678 := proc(n) option remember; local k; if n=1 then 1 else 2^binomial(n-1,2)-(1/n)*add(k*binomial(n,k)*2^binomial(n-k-1,2)*A033678(k),k=1..n-1); fi; end;
-
Mathematica
n = 16; (Series[ Log[ 1 + Sum[ 2^( (p-1)(p-2)/2 )x^p/(p!), {p, 1, n} ] ], {x, 0, n} ] // CoefficientList[#, x]& // Rest) * Range[n]! (* truncated exponential generating function *) (* Second program: *) a[n_] := a[n] = If[n == 1, 1, 2^Binomial[n-1, 2]-(1/n)*Sum[k*Binomial[n, k]*2^Binomial[n-k-1, 2]*a[k], {k, 1, n-1}]]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Feb 11 2014, after Maple *)
-
Sage
@cached_function def A033678(n): if n == 1: return 1 return 2^binomial(n-1, 2)-sum(k*2^((k-n+1)*(k-n+2)/2)*binomial(n,k)*A033678(k) for k in (1..n-1))/n [A033678(n) for n in (1..16)] # Peter Luschny, Jan 17 2016
Comments