A133314
Coefficients of list partition transform: reciprocal of an exponential generating function (e.g.f.).
Original entry on oeis.org
1, -1, -1, 2, -1, 6, -6, -1, 8, 6, -36, 24, -1, 10, 20, -60, -90, 240, -120, -1, 12, 30, -90, 20, -360, 480, -90, 1080, -1800, 720, -1, 14, 42, -126, 70, -630, 840, -420, -630, 5040, -4200, 2520, -12600, 15120, -5040, -1, 16, 56, -168, 112, -1008, 1344, 70
Offset: 0
Table starts:
[0] [ 1]
[1] [-1]
[2] [-1, 2]
[3] [-1, 6, -6]
[4] [-1, 8, 6, -36, 24]
[5] [-1, 10, 20, -60, -90, 240, -120]
[6] [-1, 12, 30, -90, 20, -360, 480, -90, 1080, -1800, 720]
- Vincenzo Librandi, Table of n, a(n) for n = 0..250
- M. Aguiar, Math 7410: Lie Combinatorics and Hyperplane Arrangements, notes made by D. Mehrle for course taught by Aguiar at Cornell, 2016, p. 49.
- M. Aguiar and F. Ardila, The algebraic and combinatorial structure of generalized permutahedra [sic], MSRI Summer School July 19, 2017.
- M. Aguiar and F. Ardila, Hopf monoids and generalized permutahedra [sic], arXiv:1709.07504 [math.CO], p. 5, 2017.
- N. Arkani-Hamed, Y. Bai, S. He, and G. Yan, Scattering forms and the positive geometry of kinematics, color, and the worldsheet , arXiv:1711.09102 [hep-th], 2017.
- J. Bergström and S. Minabe, On the cohomology of the Losev-Manin moduli space, arXiv:1108.0338 [math.AG], (cf. p. 1), 2013.
- Z. Bern, J.Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban , The Duality Between Color and Kinematics and its Applications, arXiv preprint arXiv:1909.01358 [hep-th], 2019.
- L. Berry, S. Forcey, M. Ronco, and P. Showers, Polytopes and Hopf algebras of painted trees: Fan graphs and Stellohedra, arXiv:1608.08546 [math.CO], 2018.
- Tom Copeland, Bijective mapping between face polytopes of permutohedra and partitions of integers, Math StackExchange question, 2016.
- Tom Copeland, Compilation of OEIS Partition Polynomials A133314, A134685, A145271, A356144, and A356145, 2022.
- Tom Copeland, In the Realm of Shadows: Umbral inverses and associahedra, noncrossing partitions, symmetric polynomials, and similarity transforms, 2019.
- Karl-Dieter Crisman, The Borda Count, the Kemeny Rule, and the permutahedron [sic], preprint, 2014.
- Karl-Dieter Crisman, The Borda Count, the Kemeny Rule, and the permutahedron [sic], in: Karl-Dieter Crisman and Michael A. Jones (eds.), The Mathematics of Decisions, Elections, and Games, Contemporary Mathematics, AMS, Vol. 624, 2014, pp. 101-134.
- R. Da Rosa, D. Jensen, and D. Ranganathan, Toric graph associahedra and compactifications of M_(0,n), arXiv:1411.0537 [math.AG], 2015.
- Nick Early, Honeycomb tessellations and canonical bases for permutohedral blades, arXiv:1810.03246 [math.CO], 2018.
- S. Forcey, The Hedra Zoo
- S. Franco and A. Hasan, Graded Quivers, Generalized Dimer Models and Toric Geometry , arXiv preprint arXiv:1904.07954 [hep-th], 2019.
- M. Futaki and K. Ueda, Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space , arXiv preprint arXiv:1001.4858 [math.SG], 2010-2014.
- X. Gao, S. He, Y. Zhan, Labelled tree graphs, Feynman diagrams and disk integrals , arXiv:1708.08701 [hep-th], 2017.
- A. Hasan, Physics and Mathematics of Graded Quivers, dissertation, Graduate Center, City University of New York, 2019.
- D. Karp, D. Ranganathan, P. Riggins, and U. Whitcher, Toric Symmetry of CP^3, arXiv:1109.5157 [math.AG], 2011.
- R. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads, arXiv preprint arXiv:1602.08247 [math.AT], 2016.
- M. Lin, Graph Cohomology, 2016.
- J. Loday, The Multiple Facets of the Associahedron
- MathOverflow, Analogue of conic sections for the permutohedra, associahedra, and noncrossing partitions, an MO question posed by T. Copeland, 2017.
- W. Norledge and A. Ocneanu, Hopf monoids, permutohedral cones, and generalized retarded functions, arXiv preprint arXiv:1911.11736 [math.CO], 2020.
- P. Olver, The canonical contact form, p. 9.
- V. Pilaud, The Associahedron and its Friends, presentation for Séminaire Lotharingien de Combinatoire, April 4 - 6, 2016.
- J . Pitman and R. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, arxiv: 9908029 [math.CO], 1999.
- A. Postnikov, Positive Grassmannian and Polyhedral Subdivisions, arXiv:1806.05307 [math.CO], (cf. p. 17), 2018.
- D. Ranganathan, Gromov-Witten Theory of Blowups of Toric Threefolds, senior thesis, Harvey Mudd College, 2012.
- D. Ranganathan, Gromov-Witten Theory of Blowups of Toric Threefolds (poster), poster for senior thesis, Harvey Mudd College, 2012.
- E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Mathematische Annalen vol. 2, 317-365, 1870, (bottom of p. 342, see Stewart below for a translation).
- G. Stewart, On infinitely many algorithms for solving equations, 1993, (translation into English of the Schröder paper above, see top of p. 31 for differently normalized partition polynomials of this entry).
Cf.
A000110,
A000129,
A000262,
A000587,
A000670,
A001286,
A007318,
A019538,
A049019,
A084358,
A094587,
A105278,
A110327,
A110330,
A128229,
A132440,
A132681,
A132710,
A263633.
-
b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, j]*a[j]*b[n-j], {j, 1, n}];
row[0] = {1}; row[n_] := Coefficient[b[n], #]& /@ (Times @@ (a /@ #)&) /@ IntegerPartitions[n];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
-
def A133314_row(n): return [(-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in Partitions(n)]
for n in (0..10): print(A133314_row(n)) # Peter Luschny, Sep 18 2015
A145271
Coefficients for expansion of (g(x)d/dx)^n g(x); refined Eulerian numbers for calculating compositional inverse of h(x) = (d/dx)^(-1) 1/g(x); iterated derivatives as infinitesimal generators of flows.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 1, 11, 4, 7, 1, 1, 26, 34, 32, 15, 11, 1, 1, 57, 180, 122, 34, 192, 76, 15, 26, 16, 1, 1, 120, 768, 423, 496, 1494, 426, 294, 267, 474, 156, 56, 42, 22, 1, 1, 247, 2904, 1389, 4288, 9204, 2127, 496, 5946, 2829, 5142, 1206, 855, 768, 1344, 1038, 288, 56, 98, 64, 29, 1
Offset: 0
From _Tom Copeland_, Sep 19 2014: (Start)
Let h(x) = log((1+a*x)/(1+b*x))/(a-b); then, g(x) = 1/(dh(x)/dx) = (1+ax)(1+bx), so (0')=1, (1')=a+b, (2')=2ab, evaluated at x=0, and higher order derivatives of g(x) vanish. Therefore, evaluated at x=0,
R^0 g(x) = 1
R^1 g(x) = a+b
R^2 g(x) = (a+b)^2 + 2ab = a^2 + 4 ab + b^2
R^3 g(x) = (a+b)^3 + 4*(a+b)*2ab = a^3 + 11 a^2*b + 11 ab^2 + b^3
R^4 g(x) = (a+b)^4 + 11*(a+b)^2*2ab + 4*(2ab)^2
= a^4 + 26 a^3*b + 66 a^2*b^2 + 26 ab^3 + b^4,
etc., and these bivariate Eulerian polynomials (A008292) are the first few coefficients of h^(-1)(x) = (e^(ax) - e^(bx))/(a*e^(bx) - b*e^(ax)), the inverse of h(x). (End)
Triangle starts:
1;
1;
1, 1;
1, 4, 1;
1, 11, 4, 7, 1;
1, 26, 34, 32, 15, 11, 1;
1, 57, 180, 122, 34, 192, 76, 15, 26, 16, 1;
1, 120, 768, 423, 496, 1494, 426, 294, 267, 474, 156, 56, 42, 22, 1;
1, 247, 2904, 1389, 4288, 9204, 2127, 496, 5946, 2829, 5142, 1206, 855, 768, 1344, 1038, 288, 56, 98, 64, 29, 1;
- D. S. Alexander, A History of Complex Dynamics: From Schröder to Fatou to Julia, Friedrich Vieweg & Sohn, 1994.
- T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, Chapman and Hall/CRC, 2015.
- Luc Rousseau, Table of n, a(n) for n = 0..9295 (rows 0 to 25, flattened).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- V. E. Adler, Set partitions and integrable hierarchies, arXiv:1510.02900 [nlin.SI], 2015.
- Filippo Bracci, Manuel D. Contreras, and Santiago Díaz-Madrigal, On the Königs function of semigroups of holomorphic self-maps of the unit disc, arXiv:1804.10465 [math.CV], p. 15, 2018.
- F. Bracci, M. Contreras, S. Díaz-Madrigal, and A. Vasil'ev, Classical and stochastic Löwner-Kufarev equations , arXiv:1309.6423 [math.CV], (cf., e.g., p. 23), 2013.
- C. Brouder, Trees, renormalization, and differential equations, BIT Numerical Mathematics, 44: 425-438, 2004, (Flow / autonomous differential equation, p. 429).
- Manuel D. Contreras, Santiago Diaz-Madrigal, and Pavel Gumenyuk, Loewner chains in the unit disk, arXiv:0902.3116 [math.CV], p. 29, 2009.
- Tom Copeland, The Elliptic Lie Triad: KdV and Ricatti Equations, Infinigens, and Elliptic Genera
- Tom Copeland, Flipping Functions with Permutohedra, Posted Oct 2008.
- Tom Copeland, Mathemagical Forests v2, 2008.
- Tom Copeland, Addendum to Mathemagical Forests, 2010.
- Tom Copeland, Important formulas in combinatorics, MathOverflow answer, 2015.
- Tom Copeland, Formal group laws and binomial Sheffer sequences, 2018.
- Tom Copeland, Pre-Lie algebras, Cayley's analytic trees, and mathemagical forests, 2018.
- Tom Copeland, Compilation of OEIS Partition Polynomials A133314, A134685, A145271, A356144, and A356145, 2022.
- P. Feinsilver, Lie algebras, representations, and analytic semigroups through dual vector fields, Cimpa-Unesco-Venezuela School, Mérida, Venezuela, Jan-Feb 2006.
- P. Feinsilver and R. Schott, Appell systems on Lie groups, J. Theor. Probab. 5 (2) (1992) 251-281.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009, p. 526 and 527.
- V. Goryainov and O. Kudryavtseva, One-parameter semigroups of analytic functions, fixed points and the Koenigs function, Sbornik: Mathematics, 202:7 (2011), 971-1000.
- Darij Grinberg, Commutators, matrices, and an identity of Copeland, arXiv:1908.09179 [math.RA], 2019.
- Jerome William Hoffman, Topics in Elliptic Curves and Modular Forms, p. 10.
- C. Houzel, The Work of Niels Henrik Abel, The Legacy of Niels Henrik Abel-The Abel Bicentennial, Oslo 2002 (Editors O. Laudal and R Piene), Springer-Verlag (2004), pp. 24-25.
- Thomas Krajewski and Pierre Martinetti, Wilsonian renormalization, differential equations and Hopf algebras, arXiv:0806.4309 [hep-th], 2008.
- Peter Luschny, Expansion A145271 (added Jul 21 2016)
- MathOverflow, Important formulas in combinatorics: The combinatorics underlying iterated derivatives (infinitesimal Lie generators) for compositional inversion and flow maps for vector fields, answer by Tom Copeland to an MO question posed by Gil Kalai, 2015.
- MathOverflow, Characterizing positivity of formal group laws, a MO question posed by Jair Taylor, 2018.
- MathOverflow, Expansions of iterated, or nested, derivatives, or vectors--conjectured matrix computation, a MO question posed by Tom Copeland, answered by Darij Grinberg, 2019.
- MathOverflow, A Leibniz-like formula for (f(x)D_x)^n f(x)?, a MO question posed by the user M.G. and answered by Tom Copeland, 2022.
- MathStackExchange, Closed form for sequence A145271, posed 2014, response by Tom Copeland in 2016.
- Miguel A. Mendez, Combinatorial differential operators in: Faà di Bruno formula, enumeration of ballot paths, enriched rooted trees and increasing rooted trees, arXiv:1610.03602 [math.CO], p. 28 Example 6, 2016.
- Mathias Pétréolle, Alan D. Sokal, and Bao-Xuan Zhu, Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes--Rogers and Thron--Rogers polynomials, with coefficientwise Hankel-total positivity, arXiv:1807.03271 [math.CO], 2020.
- Jair Patrick Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 66, eqn. 9.3.
- Wikipedia, Abel equation
- Wikipedia, Renormalization Group
- Julie Zhang, Noah A. Rosenberg, and Julia A. Palacios, The space of multifurcating ranked tree shapes: enumeration, lattice structure, and Markov chains, arXiv:2506.10856 [math.PR], 2025. See p. 10.
- Bao-Xuan Zhu, Coefficientwise Hankel-total positivity of row-generating polynomials for the m-Jacobi-Rogers triangle, arXiv:2202.03793 [math.CO], 2022.
- Jean Zinn-Justin, Phase Transitions and Renormalization Group: from Theory to Numbers, Séminaire Poincaré 2, pp. 55-74, 2002.
Cf. (
A133437,
A086810,
A181289) = (LIF, reduced LIF, associated g(x)), where LIF is a Lagrange inversion formula. Similarly for (
A134264,
A001263,
A119900), (
A134685,
A134991,
A019538), (
A133932,
A111999,
A007318).
-
with(LinearAlgebra): with(ListTools):
A145271_row := proc(n) local b, M, V, U, G, R, T;
if n < 2 then return 1 fi;
b := (n,k) -> `if`(k=1 or k>n+1,0,binomial(n-1,k-2)*g[n-k+1]);
M := n -> Matrix(n, b):
V := n -> Vector[row]([1, seq(0,i=2..n)]):
U := n -> VectorMatrixMultiply(V(n), M(n)^(n-1)):
G := n -> Vector([seq(g[i], i=0..n-1)]);
R := n -> VectorMatrixMultiply(U(n), G(n)):
T := Reverse([op(sort(expand(R(n+1))))]);
seq(subs({seq(g[i]=1, i=0..n)},T[j]),j=1..nops(T)) end:
for n from 0 to 9 do A145271_row(n) od; # Peter Luschny, Jul 20 2016
R^5 and R^6 formulas and terms a(19)-a(29) added by
Tom Copeland, Jul 11 2016
A112493
Triangle read by rows, T(n, k) = Sum_{j=0..n} C(n-j, n-k)*E2(n, j), where E2 are the second-order Eulerian numbers A201637, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 11, 25, 15, 1, 26, 130, 210, 105, 1, 57, 546, 1750, 2205, 945, 1, 120, 2037, 11368, 26775, 27720, 10395, 1, 247, 7071, 63805, 247555, 460845, 405405, 135135, 1, 502, 23436, 325930, 1939630, 5735730, 8828820, 6756750, 2027025, 1
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 4, 3]
[1, 11, 25, 15]
[1, 26, 130, 210, 105]
[1, 57, 546, 1750, 2205, 945]
...
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Third row [1,4,3]: There are three plane increasing trees on 3 vertices. The number of colors are shown to the right of a vertex.
...................................................
....1o.(1+t)...........1o.t*(1+t).....1o.t*(1+t)...
....|................. /.\............/.\..........
....|................ /...\........../...\.........
....2o.(1+t)........2o.....3o......3o....2o........
....|..............................................
....|..............................................
....3o.............................................
...................................................
The total number of trees is (1+t)^2 + t*(1+t) + t*(1+t) = 1+4*t+3*t^2 = R(2,t).
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
- Wolfdieter Lang, First ten rows.
- MathOverflow, Recursion for row polynomials of A112493, (2025).
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
-
T := (n, k) -> add(combinat:-eulerian2(n, j)*binomial(n-j, n-k), j=0..n):
seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 11 2016
-
max = 11; f[x_, t_] := -1 - (1 + t)/t*ProductLog[-t/(1 + t)*Exp[(x - t)/(1 + t)]]; coes = CoefficientList[ Series[f[x, t], {x, 0, max}, {t, 0, max}], {x, t}]* Range[0, max]!; Table[coes[[n, k]], {n, 0, max}, {k, 1, n - 1}] // Flatten (* Jean-François Alcover, Nov 22 2012, from e.g.f. *)
A307804
Triangle T(n,k) read by rows: number of labeled 2-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 14, 6, 1, 0, 201, 68, 12, 1, 0, 4704, 1285, 200, 20, 1, 0, 160890, 36214, 4815, 460, 30, 1, 0, 7538040, 1422288, 160594, 13755, 910, 42, 1, 0, 462869190, 74416131, 7151984, 535864, 33110, 1624, 56, 1, 0, 36055948320, 5016901734, 413347787, 26821368, 1490664, 70686, 2688, 72, 1
Offset: 0
Triangle T(n,k) starts:
1;
0, 1;
0, 2, 1;
0, 14, 6, 1;
0, 201, 68, 12, 1;
0, 4704, 1285, 200, 20, 1;
0, 160890, 36214, 4815, 460, 30, 1;
0, 7538040, 1422288, 160594, 13755, 910, 42, 1;
...
-
b:= proc(n) option remember; `if`(n<2, 1,
n^2*b(n-1)-n*(n-1)^2*b(n-2)/2)
end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-
add(j*binomial(n, j)*b(n-j)*a(j), j=1..n-1)/n)
end:
g:= proc(n, k) option remember; `if`(n=0, x^k/k!,
add(g(n-j, k+1)*a(j)*binomial(n,j), j=1..n))
end:
T:= (n,k)-> coeff(g(n, 0), x, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 22 2025
-
b[n_] := b[n] = If[n < 2, 1, n^2*b[n - 1] - n*(n - 1)^2*b[n - 2]/2];
a[n_] := a[n] = If[n == 0, 0, b[n] - Sum[j*Binomial[n, j]*b[n - j]*a[j], {j, 1, n - 1}]/n];
g[n_, k_] := g[n, k] = If[n == 0, x^k/k!, Sum[g[n - j, k + 1]*a[j]* Binomial[n, j], {j, 1, n}]];
T[n_, k_] := Coefficient[g[n, 0], x, k];
Table[Table[T[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 16 2025, after Alois P. Heinz *)
A356144
Coefficients of the set of partition polynomials [RT] = [P][E]; i.e., coefficients of polynomials resulting from using the set of refined Eulerian polynomials, [E], of A145271 as the indeterminates of the set of permutahedra polynomials, [P], of A133314. Irregular triangle read by rows with lengths given by A000041.
Original entry on oeis.org
1, -1, 1, -1, -1, 2, -1, 1, -3, 2, 1, -1, -1, 4, -4, -2, 5, -1, -1, 1, -5, 8, 2, -4, -2, -4, 5, 4, -4, -1, -1, 6, -12, -3, 8, 18, -6, -14, 13, 2, -16, 14, 0, -8, -1, 1, -7, 18, 3, -20, 0, -15, 8, 18, 57, 6, -54, -15, -12, 84, -30, -48, 14, 14, -8, -13, -1, -1, 8, -24, -4, 32, 51, -27, -16, -6, 171, -42, -177, 50, 90, -18, 456, -276, -246, -15, 30, 154, -42, 124, -166, -113, 42, 6, -21, -19, -1
Offset: 0
Arranged by rows, the coefficients are
0) 1;
1) -1;
2) 1, -1;
3) -1, 2, -1;
4) 1, -3, 2, 1, -1;
5) -1, 4, -4, -2, 5, -1, -1;
6) 1, -5, 8, 2, -4, -2, -4, 5, 4, -4, -1;
7) -1, 6, -12, -3, 8, 18, -6, -14, 13, 2, -16, 14, 0, -8, -1;
8) 1, -7, 18, 3, -20, 0, -15, 8, 18, 57, 6, -54, -15, -12, 84, -30, -48, 14, 14, -8, -13, -1;
. . .
The first few partition polynomials are
RT_0 = 1,
RT_1 = -a1,
RT_2 = a1^2 - a2,
RT_3 = -a1^3 + 2 a1 a2 - a3,
Rt_4 = a1^4 - 3 a1^2 a2 + 2 a2^2 + a1 a3 - a4,
RT_5 = -a1^5 + 4 a1^3 a2 - 4 a1 a2^2 - 2 a1^2 a3 + 5 a2 a3 - a1 a4 - a5,
RT_6 = a1^6 - 5 a1^4 a2 + 8 a1^2 a2^2 + 2 a1^3 a3 - 4 a2^3 - 2 a1 a2 a3 - 4 a1^2 a4 + 5 a3^2 + 4 a2 a4 - 4 a1 a5 - a6,
RT_7 = -a1^7 + 6 a1^5 a2 - 12*a1^3 a2^2 - 3 a1^4 a3 + 8 a1 a2^3 + 18 a1^2 a2 a3 - 6 a1^3 a4 - 14 a2^2 a3 + 13 a1 a3^2 + 2 a1 a2 a4 - 16 a1^2 a5 + 14 a3 a4 + 0 a2 a5 - 8 a1 a6 - a7,
RT_8 = a1^8 - 7 a1^6 a2 + 18 a1^4 a2^2 + 3 a1^5 a3 - 20 a1^2 a2^3 + 0 a1^3 a2 a3 - 15 a1^4 a4 + 8 a2^4 + 18 a1 a2^2 a3 + 57 a1^2 a3^2 + 6 a1^2 a2 a4 - 54 a1^3 a5 - 15 a2 a3^2 - 12 a2^2 a4 + 84 a1 a3 a4 - 30 a1 a2 a5 - 48 a1^2 a6 + 14 a4^2 + 14 a3 a5 - 8 a2 a6 - 13 a1 a7 - a8.
-
rows[nn_] := {{1}}~Join~With[{s = 1 / D[InverseSeries[Integrate[1/(1 + Sum[c[k] x^k/k!, {k, nn}] + O[x]^(nn+1)), x]], x]}, Table[Coefficient[n! s, x^n Product[c[t], {t, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
rows[7] // Flatten (* Andrey Zabolotskiy, Feb 17 2024 *)
-
B. = PolynomialRing(ZZ)
A. = PowerSeriesRing(B)
f = 1/(1 + a1*x + a2*x^2/factorial(2) + a3*x^3/factorial(3) + a4*x^4/factorial(4) + a5*x^5/factorial(5) + a6*x^6/factorial(6) + a7*x^7/factorial(7) + a8*x^8/factorial(8) + a9*x^9/factorial(9) + a10*x^10/factorial(10) )
g = integrate(f)
h = g.reverse()
w = derivative(h,x)
I = 1 / w
# Added by # Peter Luschny, Feb 17 2024:
# The list of coefficients in sparse format (i.e. without the zeros):
for n, c in enumerate(I.list()[:10]):
print(f"RT[{n}]", (factorial(n)*c).coefficients())
Showing 1-5 of 5 results.
Comments