cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A112495 Third column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

Original entry on oeis.org

3, 25, 130, 546, 2037, 7071, 23436, 75328, 237127, 735813, 2260518, 6896046, 20933673, 63325051, 191088976, 575625900, 1731858075, 5206059585, 15640198410, 46966732090, 140996664733, 423191320215, 1269993390420
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

2*a(n-4) is the number of ternary words of length n where two of the letters are used at least twice. For example, for n=5 the 50 words that use 0 and 1 at least twice are 00011 (10 of this type), 00111 (10 of this type) and 00112 (30 of this type). - Enrique Navarrete, Feb 14 2025

Crossrefs

Cf. A000295 (second column).
Column k=2 of A124324 (shifted).

Programs

  • Mathematica
    CoefficientList[Series[(3 - 5*x)/(((1 - x)^3)*((1 - 2*x)^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
    Table[3^(n+4)/2 - (n+6)*2^(n+3) + n^2/2 + 9*n/2 + 21/2, {n,0,25}] (* Vaclav Kotesovec, Jul 23 2021 *)
  • PARI
    x='x+O('x^50); Vec((3-5*x)/(((1-x)^3)*((1-2*x)^2)*(1-3*x))) \\ G. C. Greubel, Nov 13 2017

Formula

a(n) = 3*a(n-1)+ (n+3)*(2^(n+2)-(n+3)), n>=1, a(0)=3.
G.f.: (3-5*x)/(((1-x)^3)*((1-2*x)^2)*(1-3*x)).
a(n) = 3^(n+4)/2 - (n+6)*2^(n+3) + n^2/2 + 9*n/2 + 21/2. - Vaclav Kotesovec, Jul 23 2021
E.g.f.: (1/2)*exp(x)*(exp(x)-x-1)^2 (with offset 4). - Enrique Navarrete, Feb 14 2025

A112496 Fourth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

Original entry on oeis.org

15, 210, 1750, 11368, 63805, 325930, 1561516, 7150000, 31682651, 137031986, 582035714, 2438479592, 10109790809, 41579014154, 169946747160, 691299506640, 2801567046135, 11320801495410, 45642930545070, 183698923750440
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Crossrefs

Cf. A112495 (third column).
Column k=3 of A124324 (shifted).

Programs

  • Mathematica
    CoefficientList[Series[(15 - 90*x + 175*x^2 - 112*x^3)/((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)), {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
    Table[2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6, {n,0,25}] (* Vaclav Kotesovec, Jul 23 2021 *)
  • PARI
    x='x+O('x^50); Vec((15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x))) \\ G. C. Greubel, Nov 13 2017

Formula

G.f.: (15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)).
a(n) = 4*a(n-1) + (n+5)*A112495(n).
a(n) = 2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6. - Vaclav Kotesovec, Jul 23 2021

A112497 Fifth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

Original entry on oeis.org

105, 2205, 26775, 247555, 1939630, 13609310, 88346258, 541831290, 3184396215, 18114492851, 100467071393, 546227989621, 2923225973476, 15447710150460, 80807432442660, 419245751359380, 2160664798858005, 11075023230179865
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Crossrefs

Cf. A112496 (fourth column).
Column k=4 of A124324 (shifted).

Programs

  • Mathematica
    CoefficientList[Series[(105 - 1470*x + 8400*x^2 - 25130*x^3 + 41615*x^4 - 36280*x^5 + 13048*x^6)/Product[(1 - j*x)^(6 - j), {j, 1, 5}], {x, 0, 50}], x] (* G. C. Greubel, Nov 13 2017 *)
  • PARI
    x='x+O('x^50); Vec((105 -1470*x +8400*x^2 -25130*x^3 +41615*x^4 -36280*x^5 +13048*x^6)/((1-x)^5*(1-2*x)^4*(1-3*x)^3*(1-4*x)^2*(1-5*x))) \\ G. C. Greubel, Nov 13 2017

Formula

G.f.: (105-1470*x+8400*x^2-25130*x^3+41615*x^4-36280*x^5+13048*x^6) / product((1-j*x)^(6-j), j=1..5).
a(n) = 5*a(n-1) + (n+7)*A112496(n).

A000295 Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).

Original entry on oeis.org

0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of Dyck paths of semilength n having exactly one long ascent (i.e., ascent of length at least two). Example: a(4)=11 because among the 14 Dyck paths of semilength 4, the paths that do not have exactly one long ascent are UDUDUDUD (no long ascent), UUDDUUDD and UUDUUDDD (two long ascents). Here U=(1,1) and D=(1,-1). Also number of ordered trees with n edges having exactly one branch node (i.e., vertex of outdegree at least two). - Emeric Deutsch, Feb 22 2004
Number of permutations of {1,2,...,n} with exactly one descent (i.e., permutations (p(1),p(2),...,p(n)) such that #{i: p(i)>p(i+1)}=1). E.g., a(3)=4 because the permutations of {1,2,3} with one descent are 132, 213, 231 and 312.
a(n+1) is the convolution of nonnegative integers (A001477) and powers of two (A000079). - Graeme McRae, Jun 07 2006
Partial sum of main diagonal of A125127. - Jonathan Vos Post, Nov 22 2006
Number of partitions of an n-set having exactly one block of size > 1. Example: a(4)=11 because, if the partitioned set is {1,2,3,4}, then we have 1234, 123|4, 124|3, 134|2, 1|234, 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34. - Emeric Deutsch, Oct 28 2006
k divides a(k+1) for k in A014741. - Alexander Adamchuk, Nov 03 2006
(Number of permutations avoiding patterns 321, 2413, 3412, 21534) minus one. - Jean-Luc Baril, Nov 01 2007, Mar 21 2008
The chromatic invariant of the prism graph P_n for n >= 3. - Jonathan Vos Post, Aug 29 2008
Decimal integer corresponding to the result of XORing the binary representation of 2^n - 1 and the binary representation of n with leading zeros. This sequence and a few others are syntactically similar. For n > 0, let D(n) denote the decimal integer corresponding to the binary number having n consecutive 1's. Then D(n).OP.n represents the n-th term of a sequence when .OP. stands for a binary operator such as '+', '-', '*', 'quotentof', 'mod', 'choose'. We then get the various sequences A136556, A082495, A082482, A066524, A000295, A052944. Another syntactically similar sequence results when we take the n-th term as f(D(n)).OP.f(n). For example if f='factorial' and .OP.='/', we get (A136556)(A000295) ; if f='squaring' and .OP.='-', we get (A000295)(A052944). - K.V.Iyer, Mar 30 2009
Chromatic invariant of the prism graph Y_n.
Number of labelings of a full binary tree of height n-1, such that each path from root to any leaf contains each label from {1,2,...,n-1} exactly once. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009
Also number of nontrivial equivalence classes generated by the weak associative law X((YZ)T)=(X(YZ))T on words with n open and n closed parentheses. Also the number of join (resp. meet)-irreducible elements in the pruning-grafting lattice of binary trees with n leaves. - Jean Pallo, Jan 08 2010
Nonzero terms of this sequence can be found from the row sums of the third sub-triangle extracted from Pascal's triangle as indicated below by braces:
1;
1, 1;
{1}, 2, 1;
{1, 3}, 3, 1;
{1, 4, 6}, 4, 1;
{1, 5, 10, 10}, 5, 1;
{1, 6, 15, 20, 15}, 6, 1;
... - L. Edson Jeffery, Dec 28 2011
For integers a, b, denote by a<+>b the least c >= a, such that the Hamming distance D(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then for n >= 3, a(n) = n<+>n. This has a simple explanation: for n >= 3 in binary we have a(n) = (2^n-1)-n = "anti n". - Vladimir Shevelev, Feb 14 2012
a(n) is the number of binary sequences of length n having at least one pair 01. - Branko Curgus, May 23 2012
Nonzero terms are those integers k for which there exists a perfect (Hamming) error-correcting code. - L. Edson Jeffery, Nov 28 2012
a(n) is the number of length n binary words constructed in the following manner: Select two positions in which to place the first two 0's of the word. Fill in all (possibly none) of the positions before the second 0 with 1's and then complete the word with an arbitrary string of 0's or 1's. So a(n) = Sum_{k=2..n} (k-1)*2^(n-k). - Geoffrey Critzer, Dec 12 2013
Without first 0: a(n)/2^n equals Sum_{k=0..n} k/2^k. For example: a(5)=57, 57/32 = 0/1 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32. - Bob Selcoe, Feb 25 2014
The first barycentric coordinate of the centroid of the first n rows of Pascal's triangle, assuming the numbers are weights, is A000295(n+1)/A000337(n). See attached figure. - César Eliud Lozada, Nov 14 2014
Starting (0, 1, 4, 11, ...), this is the binomial transform of (0, 1, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Also the number of (non-null) connected induced subgraphs in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Aug 27 2017
a(n) is the number of swaps needed in the worst case to transform a binary tree with n full levels into a heap, using (bottom-up) heapify. - Rudy van Vliet, Sep 19 2017
The utility of large networks, particularly social networks, with n participants is given by the terms a(n) of this sequence. This assertion is known as Reed's Law, see the Wikipedia link. - Johannes W. Meijer, Jun 03 2019
a(n-1) is the number of subsets of {1..n} in which the largest element of the set exceeds by at least 2 the next largest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,2,5}, {1,3,5}, {2,3,5}, {1,2,3,5}. - Enrique Navarrete, Apr 08 2020
a(n-1) is also the number of subsets of {1..n} in which the second smallest element of the set exceeds by at least 2 the smallest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,4,5}, {1,3,4,5}. - Enrique Navarrete, Apr 09 2020
a(n+1) is the sum of the smallest elements of all subsets of {1..n}. For example, for n=3, a(4)=11; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 11. - Enrique Navarrete, Aug 20 2020
Number of subsets of an n-set that have more than one element. - Eric M. Schmidt, Mar 13 2021
Number of individual bets in a "full cover" bet on n-1 horses, dogs, etc. in different races. Each horse, etc. can be bet on or not, giving 2^n bets. But, by convention, singles (a bet on only one race) are not included, reducing the total number bets by n. It is also impossible to bet on no horses at all, reducing the number of bets by another 1. A full cover on 4 horses, dogs, etc. is therefore 6 doubles, 4 trebles and 1 four-horse etc. accumulator. In British betting, such a bet on 4 horses etc. is a Yankee; on 5, a super-Yankee. - Paul Duckett, Nov 17 2021
From Enrique Navarrete, May 25 2022: (Start)
Number of binary sequences of length n with at least two 1's.
a(n-1) is the number of ways to choose an odd number of elements greater than or equal to 3 out of n elements.
a(n+1) is the number of ways to split [n] = {1,2,...,n} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n} and then select a subset from the first interval (2^i choices, 0 <= i <= n), and one block/cell (i.e., subinterval) from the second interval (n-i choices, 0 <= i <= n).
(End)
Number of possible conjunctions in a system of n planets; for example, there can be 0 conjunctions with one planet, one with two planets, four with three planets (three pairs of planets plus one with all three) and so on. - Wendy Appleby, Jan 02 2023
Largest exponent m such that 2^m divides (2^n-1)!. - Franz Vrabec, Aug 18 2023
It seems that a(n-1) is the number of odd r with 0 < r < 2^n for which there exist u,v,w in the x-independent beginning of the Collatz trajectory of 2^n x + r with u+v = w+1, as detailed in the link "Collatz iteration and Euler numbers?". A better understanding of this might also give a formula for A374527. - Markus Sigg, Aug 02 2024
This sequence has a connection to consecutively halved positional voting (CHPV); see Mendenhall and Switkay. - Hal M. Switkay, Feb 25 2025
a(n) is the number of subsets of size 2 and more of an n-element set. Equivalently, a(n) is the number of (hyper)edges of size 2 and more in a complete hypergraph of n vertices. - Yigit Oktar, Apr 05 2025

Examples

			G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
		

References

  • O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A002662 (partial sums).
Partial sums of A000225.
Row sums of A014473 and of A143291.
Second column of triangles A112493 and A112500.
Sequences A125128 and A130103 are essentially the same.
Column k=1 of A124324.

Programs

  • Haskell
    a000295 n = 2^n - n - 1  -- Reinhard Zumkeller, Nov 25 2013
    
  • Magma
    [2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
    
  • Magma
    [EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
    
  • Maple
    [ seq(2^n-n-1, n=1..50) ];
    A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
    # Grammar specification:
    spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
    struct := n -> combstruct[count](spec, size = n+1);
    seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
  • Mathematica
    a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
    Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
    LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
    Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
  • PARI
    a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • SageMath
    [2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = 2^n - n - 1.
G.f.: x^2/((1-2*x)*(1-x)^2).
A107907(a(n+2)) = A000079(n+2). - Reinhard Zumkeller, May 28 2005
E.g.f.: exp(x)*(exp(x)-1-x). - Emeric Deutsch, Oct 28 2006
a(0)=0, a(1)=0, a(n) = 3*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(0)=0, a(n) = 2*a(n-1) + n - 1 for all n in Z.
a(n) = Sum_{k=2..n} binomial(n, k). - Paul Barry, Jun 05 2003
a(n+1) = Sum_{i=1..n} Sum_{j=1..i} C(i, j). - Benoit Cloitre, Sep 07 2003
a(n+1) = 2^n*Sum_{k=0..n} k/2^k. - Benoit Cloitre, Oct 26 2003
a(0)=0, a(1)=0, a(n) = Sum_{i=0..n-1} i+a(i) for i > 1. - Gerald McGarvey, Jun 12 2004
a(n+1) = Sum_{k=0..n} (n-k)*2^k. - Paul Barry, Jul 29 2004
a(n) = Sum_{k=0..n} binomial(n, k+2); a(n+2) = Sum_{k=0..n} binomial(n+2, k+2). - Paul Barry, Aug 23 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k+1)*2^(n-k-2)*(-1/2)^k. - Paul Barry, Oct 25 2004
a(0) = 0; a(n) = Stirling2(n,2) + a(n-1) = A000225(n-1) + a(n-1). - Thomas Wieder, Feb 18 2007
a(n) = A000325(n) - 1. - Jonathan Vos Post, Aug 29 2008
a(0) = 0, a(n) = Sum_{k=0..n-1} 2^k - 1. - Doug Bell, Jan 19 2009
a(n) = A000217(n-1) + A002662(n) for n>0. - Geoffrey Critzer, Feb 11 2009
a(n) = A000225(n) - n. - Zerinvary Lajos, May 29 2009
a(n) = n*(2F1([1,1-n],[2],-1) - 1). - Olivier Gérard, Mar 29 2011
Column k=1 of A173018 starts a'(n) = 0, 1, 4, 11, ... and has the hypergeometric representation n*hypergeom([1, -n+1], [-n], 2). This can be seen as a formal argument to prefer Euler's A173018 over A008292. - Peter Luschny, Sep 19 2014
E.g.f.: exp(x)*(exp(x)-1-x); this is U(0) where U(k) = 1 - x/(2^k - 2^k/(x + 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n) = A079583(n) - A000225(n+1). - Miquel Cerda, Dec 25 2016
a(0) = 0; a(1) = 0; for n > 1: a(n) = Sum_{i=1..2^(n-1)-1} A001511(i). - David Siegers, Feb 26 2019
a(n) = A007814(A028366(n)). - Franz Vrabec, Aug 18 2023
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n+1, 2*k+1). - Taras Goy, Jan 02 2025

A001296 4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).

Original entry on oeis.org

0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470
Offset: 0

Views

Author

Keywords

Comments

Permutations avoiding 12-3 that contain the pattern 31-2 exactly once.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums of A002411. - Jonathan Vos Post, Mar 16 2006
If Y is a 3-subset of an n-set X then, for n>=6, a(n-5) is the number of 6-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Starting with 1 = binomial transform of [1, 6, 12, 10, 3, 0, 0, 0, ...]. Equals row sums of triangle A143037. - Gary W. Adamson, Jul 18 2008
Rephrasing the Perry formula of 2003: a(n) is the sum of all products of all two numbers less than or equal to n, including the squares. Example: for n=3 the sum of these products is 1*1 + 1*2 + 1*3 + 2*2 + 2*3 + 3*3 = 25. - J. M. Bergot, Jul 16 2011
Half of the partial sums of A011379. [Jolley, Summation of Series, Dover (1961), page 12 eq (66).] - R. J. Mathar, Oct 03 2011
Also the number of (w,x,y,z) with all terms in {1,...,n+1} and w < x >= y > z (see A211795). - Clark Kimberling, May 19 2012
Convolution of A000027 with A000326. - Bruno Berselli, Dec 06 2012
This sequence is related to A000292 by a(n) = n*A000292(n) - Sum_{i=0..n-1} A000292(i) for n>0. - Bruno Berselli, Nov 23 2017
a(n-2) is the maximum number of intersections made from the perpendicular bisectors of all pair combinations of n points. - Ian Tam, Dec 22 2020

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 65*x^4 + 140*x^5 + 266*x^6 + 462*x^7 + 750*x^8 + 1155*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=f(n, 2) where f is given in A034261.
a(n)= A093560(n+3, 4), (3, 1)-Pascal column.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
Cf. similar sequences listed in A241765 and A254142.
Cf. A000914.

Programs

  • Magma
    /* A000027 convolved with A000326: */ A000326:=func; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012
    
  • Magma
    [(3*n+1)*Binomial(n+2,3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
  • Maple
    A001296:=-(1+2*z)/(z-1)**5; # Simon Plouffe in his 1992 dissertation for sequence without the leading zero
  • Mathematica
    Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]
    CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Table[StirlingS2[n+2, n], {n, 0, 40}] (* Jean-François Alcover, Jun 24 2015 *)
    Table[ListCorrelate[Accumulate[Range[n]],Range[n]],{n,0,40}]//Flatten (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,25,65},40] (* Harvey P. Dale, Aug 14 2017 *)
  • PARI
    t(n)=n*(n+1)/2
    for(i=1,30,print1(","sum(j=1,i,j*t(j))))
    
  • PARI
    {a(n) = n * (n+1) * (n+2) * (3*n+1) / 24}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+2,n) for n in range(0,38)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = n*(1+n)*(2+n)*(1+3*n)/24. - T. D. Noe, Jan 21 2008
G.f.: x*(1+2*x)/(1-x)^5. - Paul Barry, Jul 23 2003
a(n) = Sum_{j=0..n} j*A000217(j). - Jon Perry, Jul 28 2003
E.g.f. with offset -1: exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!). For the coefficients [1, 4, 3] see triangle A112493.
E.g.f. x*exp(x)*(24 + 60*x + 28*x^2 + 3*x^3)/24 (above e.g.f. differentiated).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 3. - Kieren MacMillan, Sep 29 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Jaume Oliver Lafont, Nov 23 2008
O.g.f. is D^2(x/(1-x)) = D^3(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A153978(n)/2. - J. M. Bergot, Aug 09 2013
a(n) = A002817(n) + A000292(n-1). - J. M. Bergot, Aug 29 2013; [corrected by Cyril Damamme, Feb 26 2018]
a(n) = A000914(n+1) - 2 * A000330(n+1). - Antal Pinter, Dec 31 2015
a(n) = A080852(3,n-1). - R. J. Mathar, Jul 28 2016
a(n) = 1*(1+2+...+n) + 2*(2+3+...+n) + ... + n*n. For example, a(6) = 266 = 1(1+2+3+4+5+6) + 2*(2+3+4+5+6) + 3*(3+4+5+6) + 4*(4+5+6) + 5*(5+6) + 6*(6).- J. M. Bergot, Apr 20 2017
a(n) = A000914(-2-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = A000292(n) + A050534(n+1). - Cyril Damamme, Feb 26 2018
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = (6/5) * (47 - 3*sqrt(3)*Pi - 27*log(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (6/5) * (16*log(2) + 6*sqrt(3)*Pi - 43). (End)

A008278 Reflected triangle of Stirling numbers of 2nd kind, S(n,n-k+1), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 15, 1, 1, 15, 65, 90, 31, 1, 1, 21, 140, 350, 301, 63, 1, 1, 28, 266, 1050, 1701, 966, 127, 1, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1
Offset: 1

Views

Author

Keywords

Comments

The n-th row also gives the coefficients of the sigma polynomial of the empty graph \bar K_n. - Eric W. Weisstein, Apr 07 2017
The n-th row also gives the coefficients of the independence polynomial of the (n-1)-triangular honeycomb bishop graph. - Eric W. Weisstein, Apr 03 2018
From Gus Wiseman, Aug 11 2020: (Start)
Conjecture: also the number of divisors of the superprimorial A006939(n - 1) that have 0 <= k <= n distinct prime factors, all appearing with distinct multiplicities. For example, row n = 4 counts the following divisors of 360:
1 2 12 360
3 18
4 20
5 24
8 40
9 45
72
Equivalently, T(n,k) is the number of length-n vectors 0 <= v_i <= i with k nonzero values, all of which are distinct.
Crossrefs:
A006939 lists superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336420 is the version counting all prime factors, not just distinct ones.
(End)
From Leonidas Liponis, Aug 26 2024: (Start)
It appears that this sequence is related to the combinatorial form of Faà di Bruno's formula. Specifically, the number of terms for the n-th derivative of a composite function y = f(g(x)) matches the number of partitions of n.
For example, consider the case where g(x) = e^x, in which all derivatives of g(x) are equal. The first 5 rows of A008278 appear as the factors of derivatives of f(x), highlighted here in brackets:
dy/dx = [ 1 ] * f'(e^x) * e^x
d^2y/dx^2 = [ 1 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
d^3y/dx^3 = [ 1 ] * f'''(e^x) * e^{3x} + [ 3 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
d^4y/dx^4 = [ 1 ] * f''''(e^x) * e^{4x} + [ 6 ] * f'''(e^x) * e^{3x} + [ 7 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
d^5y/dx^5 = [ 1 ] * f'''''(e^x) * e^{5x} + [ 10 ] * f''''(e^x) * e^{4x} + [ 25 ] * f'''(e^x) * e^{3x} + [ 15 ] * f''(e^x) * e^{2x} + [ 1 ] * f'(e^x) * e^x
This pattern is observed in Mathematica for the first 10 cases, using the code below.
(End)

Examples

			The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!).
Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   7,    1;
  1, 10,  25,   15,    1;
  1, 15,  65,   90,   31,    1;
  1, 21, 140,  350,  301,   63,    1;
  1, 28, 266, 1050, 1701,  966,  127,   1;
  1, 36, 462, 2646, 6951, 7770, 3025, 255, 1;
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994.

Crossrefs

See A008277 and A048993, which are the main entries for this triangle of numbers.

Programs

  • Haskell
    a008278 n k = a008278_tabl !! (n-1) !! (k-1)
    a008278_row n = a008278_tabl !! (n-1)
    a008278_tabl = iterate st2 [1] where
      st2 row = zipWith (+) ([0] ++ row') (row ++ [0])
                where row' = reverse $ zipWith (*) [1..] $ reverse row
    -- Reinhard Zumkeller, Jun 22 2013
    
  • Mathematica
    rows = 10; Flatten[Table[StirlingS2[n, k], {n, 1, rows}, {k, n, 1, -1}]] (* Jean-François Alcover, Nov 17 2011, *)
    Table[CoefficientList[x^n BellB[n, 1/x], x], {n, 10}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *)
    n = 5; Grid[Prepend[Transpose[{Range[1, n], Table[D[f[Exp[x]], {x, i}], {i, 1, n}]}], {"Order","Derivative"}], Frame -> All, Spacings -> {2, 1}] (* Leonidas Liponis, Aug 27 2024 *)
  • PARI
    for(n=1,10,for(k=1,n,print1(stirling(n,n-k+1,2),", "))) \\ Hugo Pfoertner, Aug 30 2020

Formula

T(n, k)=0 if n < k, T(n, 0)=0, T(1, 1)=1, T(n, k) = (n-k+1)*T(n-1, k-1) + T(n-1, k) otherwise.
O.g.f. for the k-th column: 1/(1-x) if k=1 and A(k,x):=((x^k)/(1-x)^(2*k+1))*Sum_{m=0..k-1} A008517(k,m+1)*x^m if k >= 2. A008517 is the second-order Eulerian triangle. Cf. p. 257, eq. (6.43) of the R. L. Graham et al. book. - Wolfdieter Lang, Oct 14 2005
E.g.f. for the k-th column (with offset n=0): E(k,x):=exp(x)*Sum_{m=0..k-1} A112493(k-1,m)*(x^(k-1+m))/(k-1+m)! if k >= 1. - Wolfdieter Lang, Oct 14 2005
a(n) = abs(A213735(n-1)). - Hugo Pfoertner, Sep 07 2020

Extensions

Name edited by Gus Wiseman, Aug 11 2020

A134991 Triangle of Ward numbers T(n,k) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 25, 105, 105, 1, 56, 490, 1260, 945, 1, 119, 1918, 9450, 17325, 10395, 1, 246, 6825, 56980, 190575, 270270, 135135, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025, 1, 1012, 74316, 1487200, 12122110, 47507460, 94594500, 91891800, 34459425
Offset: 1

Views

Author

Tom Copeland, Feb 05 2008

Keywords

Comments

This is the triangle of associated Stirling numbers of the second kind, A008299, read along the diagonals.
This is also a row-reversed version of A181996 (with an additional leading 1) - see the table on p. 92 in the Ward reference. A134685 is a refinement of the Ward table.
The first and second diagonals are A001147 and A000457 and appear in the diagonals of several OEIS entries. The polynomials also appear in Carlitz (p. 85), Drake et al. (p. 8) and Smiley (p. 7).
First few polynomials (with a different offset) are
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 3*t^2
P(4,t) = t + 10*t^2 + 15*t^3
P(5,t) = t + 25*t^2 + 105*t^3 + 105*t^4
These are the "face" numbers of the tropical Grassmannian G(2,n),related to phylogenetic trees (with offset 0 beginning with P(2,t)). Corresponding h-vectors are A008517. - Tom Copeland, Oct 03 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-(1+t) P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
Beginning with the second column, the rows give the faces of the Whitehouse simplicial complex with the fourth-order complex being three isolated vertices and the fifth-order being the Petersen graph with 10 vertices and 15 edges (cf. Readdy). - Tom Copeland, Oct 03 2014
Stratifications of smooth projective varieties which are fine moduli spaces for stable n-pointed rational curves. Cf. pages 20 and 30 of the Kock and Vainsencher reference and references in A134685. - Tom Copeland, May 18 2017
Named after the American mathematician Morgan Ward (1901-1963). - Amiram Eldar, Jun 26 2021

Examples

			Triangle begins:
  1
  1   3
  1  10   15
  1  25  105  105
  1  56  490 1260   945
  1 119 1918 9450 17325 10395
  ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, page 222.

Crossrefs

The same as A269939, with column k = 0 removed.
A reshaped version of the triangle of associated Stirling numbers of the second kind, A008299.
A181996 is the mirror image.
Columns k = 2, 3, 4 are A000247, A000478, A058844.
Diagonal k = n is A001147.
Diagonal k = n - 1 is A000457.
Row sums are A000311.
Alternating row sums are signed factorials (-1)^(n-1)*A000142(n).
Cf. A112493.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; row[n_] := Table[t[k, k-n], {k, n+1, 2*n}]; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 23 2014, after A008299 *)

Formula

E.g.f. for the polynomials is A(x,t) = (x-t)/(t+1) + T{ (t/(t+1)) * exp[(x-t)/(t+1)] }, where T(x) is the Tree function, the e.g.f. of A000169. The compositional inverse in x (about x = 0) is B(x) = x + -t * [exp(x) - x - 1]. Special case t = 1 gives e.g.f. for A000311. These results are a special case of A134685 with u(x) = B(x).
From Tom Copeland, Oct 26 2008: (Start)
Umbral-Sheffer formalism gives, for m a positive integer and u = t/(t+1),
[P(.,t)+Q(.,x)]^m = [m Q(m-1,x) - t Q(m,x)]/(t+1) + sum(n>=1) { n^(n-1)[u exp(-u)]^n/n! [n/(t+1)+Q(.,x)]^m }, when the series is convergent for a sequence of functions Q(n,x).
Check: With t=1; Q(n,x)=0^n, for n>=0; and Q(-1,x)=0, then [P(.,1)+Q(.,x)]^m = P(m,1) = A000311(m).
(End)
Let h(x,t) = 1/(dB(x)/dx) = 1/(1-t*(exp(x)-1)), an e.g.f. in x for row polynomials in t of A019538, then the n-th row polynomial in t of the table A134991, P(n,t), is given by ((h(x,t)*d/dx)^n)x evaluated at x=0, i.e., A(x,t) = exp(x*P(.,t)) = exp(x*h(u,t)*d/du) u evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t). - Tom Copeland, Sep 05 2011
The polynomials (1+t)/t*P(n,t) are the row polynomials of A112493. Let f(x) = (1+x)/(1-x*t). Then for n >= 0, P(n+1,t) is given by t/(1+t)*(f(x)*d/dx)^n(f(x)) evaluated at x = 0. - Peter Bala, Sep 30 2011
From Tom Copeland, Oct 04 2011: (Start)
T(n,k) = (k+1)*T(n-1,k) + (n+k+1)*T(n-1,k-1) with starting indices n=0 and k=0 beginning with P(2,t) (as suggested by a formula of David Speyer on MathOverflow).
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) with starting indices n=1 and k=1 of table (cf. Smiley above and Riordin ref.[10] therein).
P(n,t) = (1/(1+t))^n * Sum_{k>=1} k^(n+k-1)*(u*exp(-u))^k / k! with u=(t/(t+1)) for n>1; therefore, Sum_{k>=1} (-1)^k k^(n+k-1) x^k/k! = [1+LW(x)]^(-n) P{n,-LW(x)/[1+LW(x)]}, with LW(x) the Lambert W-Fct.
T(n,k) = Sum_{i=0..k} ((-1)^i binomial(n+k,i) Sum_{j=0..k-i} (-1)^j (k-i-j)^(n+k-i)/(j!(k-i-j)!)) from relation to A008299. (End)
The e.g.f. A(x,t) = -v * ( Sum_{j=>1} D(j-1,u) (-z)^j / j! ) where u = (x-t)/(1+t), v = 1+u, z = x/((1+t) v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = 1/((1+t)(v-A)) = 1/(1-t*(exp(A)-1)). - Tom Copeland, Oct 06 2011
The general results on the convolution of the refined partition polynomials of A134685, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
E.g.f.: C(u,t) = (u-t)/(1+t) - W( -((t*exp((u-t)/(1+t)))/(1+t)) ), where W is the principal value of the Lambert W-function. - Cheng Peng, Sep 11 2021
The function C(u,t) in the previous formula by Peng is precisely the function A(u,t) given in the initial 2008 formula of this section and the Oct 06 2011 formula from Copeland. As noted in A000169, Euler's tree function is T(x) = -LambertW(-x), where W(x) is the principal branch of Lambert's function, and T(x) is the e.g.f. of A000169. - Tom Copeland, May 13 2022

Extensions

Reference to A181996 added by N. J. A. Sloane, Apr 05 2012
Further edits by N. J. A. Sloane, Jan 24 2020

A001297 Stirling numbers of the second kind S(n+3, n).

Original entry on oeis.org

0, 1, 15, 90, 350, 1050, 2646, 5880, 11880, 22275, 39325, 66066, 106470, 165620, 249900, 367200, 527136, 741285, 1023435, 1389850, 1859550, 2454606, 3200450, 4126200, 5265000, 6654375, 8336601, 10359090, 12774790, 15642600, 19027800
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 1*1*1 + 1*1*2 + 1*2*2 + 2*2*2 = 15
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n+1)^2*(n+2)*(n+3)/48: n in [0..40]]; // Vincenzo Librandi, Sep 22 2017
  • Maple
    A001297:=-(1+8*z+6*z**2)/(z-1)**7; # Simon Plouffe in his 1992 dissertation, without the initial 0
  • Mathematica
    lst={};Do[f=StirlingS2[n+3, n];AppendTo[lst, f], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
    a[ n_] := n^2 (n + 1)^2 (n + 2) (n + 3) / 48; (* Michael Somos, Sep 04 2017 *)
    Table[StirlingS2[n+3,n],{n,0,30}] (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    {a(n) = n^2 * (n+1)^2 * (n+2) * (n+3) / 48}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+3,n) for n in range(0, 34)] # Zerinvary Lajos, May 16 2009
    

Formula

G.f.: x*(1 + 8*x + 6*x^2)/(1 - x)^7. - Paul Barry, Aug 05 2004
E.g.f. with offset -2: exp(x)*(1*(x^3)/3! + 11*(x^4)/4! + 25*(x^5)/5! + 15*(x^6)/6!). For the coefficients [1, 11, 25, 15] see triangle A112493. E.g.f.: 1/48*x*exp(x)*(x^5+22*x^4+152*x^3+384*x^2+312*x+48)/48. Above given e.g.f. differentiated twice.
a(n) = (binomial(n+4, n-1) - binomial(n+3, n-2))*(binomial(n+2, n-1) - binomial(n+1, n-2)). - Zerinvary Lajos, May 12 2006
a(n) = binomial(n+1, 2)*binomial(n+3, 4). - Vladimir Shevelev, Dec 18 2011
O.g.f.: D^3(x/(1-x)) = D^4(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A001303(-3-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k+2,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 16*Pi^2/3 - 464/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 260/9 - 4*Pi^2/3 - 64*log(2)/3. (End)
a(n) = Sum_{0<=i<=j<=k<=n} i*j*k. - Robert FERREOL, May 25 2022

Extensions

Initial zero added by N. J. A. Sloane, Jan 21 2008
Name corrected by Nathaniel Johnston, Apr 30 2011

A124324 Triangle read by rows: T(n,k) is the number of partitions of an n-set having k blocks of size > 1 (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 11, 3, 1, 26, 25, 1, 57, 130, 15, 1, 120, 546, 210, 1, 247, 2037, 1750, 105, 1, 502, 7071, 11368, 2205, 1, 1013, 23436, 63805, 26775, 945, 1, 2036, 75328, 325930, 247555, 27720, 1, 4083, 237127, 1561516, 1939630, 460845, 10395, 1, 8178
Offset: 0

Views

Author

Emeric Deutsch, Oct 28 2006

Keywords

Comments

Row sums are the Bell numbers (A000110).
It appears that the triangles in this sequence and A112493 have identical columns, except for shifts. - Jörgen Backelin, Jun 20 2022
Equivalent to Jörgen Backelin's observation, the rows of A112493 may be read off as the diagonals of this entry. - Tom Copeland, Sep 24 2022

Examples

			T(4,2) = 3 because we have 12|34, 13|24 and 14|23 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
  1;
  1;
  1,    1;
  1,    4;
  1,   11,     3;
  1,   26,    25;
  1,   57,   130,    15;
  1,  120,   546,   210;
  1,  247,  2037,  1750,   105;
  1,  502,  7071, 11368,  2205;
  1, 1013, 23436, 63805, 26775, 945;
  ...
		

Crossrefs

Programs

  • Maple
    G:=exp(t*exp(z)-t+(1-t)*z): Gser:=simplify(series(G,z=0,36)): for n from 0 to 33 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          `if`(i>1, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015, Jul 15 2017
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] :=  b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1]*If[i>1, x^j, 1], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp(t*exp(z) - t + (1-t)*z).
T(n,1) = A000295(n) (the Eulerian numbers).
Sum_{k=0..floor(n/2)} k*T(n,k) = A124325(n).
T(2n,n) = A001147(n). - Alois P. Heinz, Apr 06 2018

A001298 Stirling numbers of the second kind S(n+4, n).

Original entry on oeis.org

0, 1, 31, 301, 1701, 6951, 22827, 63987, 159027, 359502, 752752, 1479478, 2757118, 4910178, 8408778, 13916778, 22350954, 34952799, 53374629, 79781779, 116972779, 168519505, 238929405, 333832005, 460192005, 626551380, 843303006, 1122998436, 1480692556
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n+2)*(n+3)*(n+4)*(15*n^3 + 30*n^2 + 5*n - 2)/5760: n in [0..50]]; // G. C. Greubel, Oct 22 2017
  • Maple
    A001298:=-(1+22*z+58*z**2+24*z**3)/(z-1)**9; # Simon Plouffe in his 1992 dissertation, without the leading 0
  • Mathematica
    Table[StirlingS2[n+4, n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
    a[ n_] := n (n + 1) (n + 2) (n + 3) (n + 4) (15 n^3 + 30 n^2 + 5 n - 2) / 5760; (* Michael Somos, Sep 04 2017 *)
  • PARI
    {a(n) = n * (n+1) * (n+2) * (n+3) * (n+4) * (15*n^3 + 30*n^2 + 5*n - 2) / 5760}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+4,n) for n in range(0, 24)] # Zerinvary Lajos, May 16 2009
    

Formula

G.f.: x(1 + 22x + 58x^2 + 24x^3)/(1 - x)^9. - Paul Barry, Aug 05 2004
a(n) = Stirling2(n+4, n) = Sum_{L=1..n} (Sum_{k=1..L} (Sum_{j=1..k} (Sum_{i=1..j} i*j*k*L))) = (n+4)*(n+3)*(n+2)*(n+1)*n *(15*n^3 + 30*n^2 + 5*n - 2)/5760 = (15*n^3 + 30*n^2 + 5*n - 2)*binomial(n+4, 5)/48. - Vladeta Jovovic, Jan 31 2005
E.g.f. with offset -3: exp(x)*(1*(x^4)/4! + 26*(x^5)/5! + 130*(x^6)/6! + 210*(x^7)/7! +105*(x^8)/8!). For the coefficients [1, 26, 130, 210, 105] see triangle A112493. E.g.f.: x*exp(x)*(15*x^7 + 600*x^6 + 8600*x^5 + 55248*x^4 + 162960*x^3 + 202560*x^2 + 83520*x + 5760)/5760. Above given e.g.f. differentiated three times.
O.g.f. is D^4(x/(1-x)), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A000915(-4-n) for all n in Z. - Michael Somos, Sep 04 2017

Extensions

Name edited and initial zero added by Nathaniel Johnston, Apr 30 2011
Showing 1-10 of 13 results. Next