A234574 T(n,k) is the number of size k ordered submultisets of the regular multiset {1_1,1_2,...,1_(n-1),1_n, ... ,i_1,i_2,...,i_(n-1),i_n, ... ,n_1,n_2,...,n_(n-1),n_n} (which contains n copies of i for 1 <= i <= n).
1, 1, 1, 1, 2, 4, 6, 6, 1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680, 1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000, 1, 5, 25, 125, 625, 3125, 15620, 77980, 388220, 1923180, 9454620
Offset: 0
Examples
For n=2 we have the regular multiset L = [1,1,2,2]. We get the following ordered submultisets from L: For k=0 1 multiset: [] For k=1 2 multisets: [1], [2] For k=2 4 multisets: [1,1], [1,2], [2,1], [2,2] For k=3 6 multisets: [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1] For k=4 6 multisets: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1]. Triangle begins with: 1; 1, 1; 1, 2, 4, 6, 6; 1, 3, 9, 27, 78, 210, 510, 1050, 1680, 1680; 1, 4, 16, 64, 256, 1020, 4020, 15540, 58380, 210840, 722400, 2310000, 6745200, 17417400, 37837800, 63063000, 63063000; ...
Links
- Alois P. Heinz, Rows n = 0..26, flattened
- Thomas Wieder, Maple program for A234574
Programs
-
Maple
# first Maple program: see link above # second Maple program: b:= proc(n, k, i) option remember; `if`(k=0, 1, `if`(i<1, 0, add(b(n, k-j, i-1)/j!, j=0..n))) end: T:= (n, k)-> b(n, k, n)*k!: seq(seq(T(n, k), k=0..n^2), n=0..5); # Alois P. Heinz, Jul 04 2016
Extensions
More terms from Alois P. Heinz, Jul 04 2016
Comments