cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ilya Gutkovskiy

Ilya Gutkovskiy's wiki page.

Ilya Gutkovskiy has authored 5459 sequences. Here are the ten most recent ones:

A385757 a(n) is the smallest number having n smaller numbers with the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 26, 31, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205
Offset: 1

Author

Ilya Gutkovskiy, Jul 08 2025

Keywords

Comments

a(n) is the least number k such that A335097(k) = n.

Examples

			The smallest number having 9 smaller numbers (4, 6, 9, 10, 14, 15, 21, 22 and 25) with the same number of prime factors (counted with multiplicity) is 26, so a(9) is 26.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{k = 1, m, cnt}, While[True,m = PrimeOmega[k];cnt = Sum[Boole[PrimeOmega[i] == m], {i, 2, k - 1}];If[cnt == n, Return[k]];k++ ]];Array[a,65] (* James C. McMahon, Jul 13 2025 *)
  • PARI
    a(n) = my(k=2, m=bigomega(k)); while (sum(i=2, k-1, bigomega(i) == m) !=n, k++; m=bigomega(k)); k; \\ Michel Marcus, Jul 09 2025

A385752 a(n) = Sum_{k=0..n} Stirling1(n,k) * (n!/k!)^2.

Original entry on oeis.org

1, 1, -3, 46, -1967, 179351, -29861639, 8200834972, -3456505906559, 2118756407303197, -1811589861406160699, 2089746219541021377546, -3164800617505630505525903, 6151223064132377579849537011, -15052264342298428131766095419839, 45616620088948927404807879986431576, -168785206495071742797011703980958673919
Offset: 0

Author

Ilya Gutkovskiy, Jul 08 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, k] (n!/k!)^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[Sum[Log[1 + x]^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = Sum_{k>=0} log(1 + x)^k / k!^3.

A385750 a(n) = Sum_{k=0..n} Stirling2(n,k) * (n!/k!)^2.

Original entry on oeis.org

1, 1, 5, 64, 1681, 78651, 5891041, 653545390, 101785047169, 21431911982437, 5927319770834701, 2101574777340578156, 935265924020629176625, 512945332353359967175999, 341342159773993944429746793, 272012935493149854994361194426, 256689188247205271953044107166721, 284051735653584424779666013789038985
Offset: 0

Author

Ilya Gutkovskiy, Jul 08 2025

Keywords

Programs

  • Mathematica
    Table[Sum[StirlingS2[n, k] (n!/k!)^2, {k, 0, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[Sum[(Exp[x] - 1)^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

Sum_{n>=0} a(n) * x^n / n!^2 = Sum_{k>=0} (x^k / k!^2) * Product_{j=1..k} 1 / (1 - j*x).
Sum_{n>=0} a(n) * x^n / n!^3 = Sum_{k>=0} (exp(x) - 1)^k / k!^3.

A385751 a(n) = Sum_{k=0..n} |Stirling1(n,k)| * (n!/k!)^2.

Original entry on oeis.org

1, 1, 5, 100, 5137, 539851, 101035441, 30669875230, 14117057058945, 9364637252286181, 8603755430968248301, 10603853731438585516856, 17077610933602804111318705, 35160631271792580418277658415, 90839446923946068488317221868825, 289828370988497912073923950177143826, 1126236403418687405801564385561640043521
Offset: 0

Author

Ilya Gutkovskiy, Jul 08 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, k]] (n!/k!)^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[Sum[(-Log[1 - x])^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = Sum_{k>=0} (-log(1 - x))^k / k!^3.
a(n) ~ (sqrt(2*Pi/3) * exp(3*log(n)^(1/3) - 3*n) * n^(3*n + 1/2) / log(n)) * (1 - 2/(9*log(n)^(1/3)) + (gamma - 4/81)/log(n)^(2/3) - (40/2187 + 11*gamma/9)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 09 2025

A385571 Number of subsets of the first n twin primes (A001097) whose sum is a twin prime.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 22, 37, 64, 119, 227, 450, 884, 1673, 3019, 5113, 8877, 16119, 30250, 57282, 109178, 210547, 412261, 819165, 1641582, 3298602, 6600608, 13150469, 26176431, 52289653, 104981405, 210846036, 420699038, 828442946, 1610436120, 3102364760
Offset: 1

Author

Ilya Gutkovskiy, Jul 03 2025

Keywords

Examples

			a(5) = 8 subsets: {3}, {5}, {7}, {11}, {13}, {3, 5, 11}, {5, 11, 13} and {7, 11, 13}.
		

Crossrefs

Programs

Extensions

a(23)-a(25) from Amiram Eldar, Jul 03 2025
a(26)-a(36) from David Radcliffe, Jul 04 2025

A385349 Product of odd proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 3, 1, 7, 15, 1, 1, 27, 1, 5, 21, 11, 1, 3, 5, 13, 27, 7, 1, 225, 1, 1, 33, 17, 35, 27, 1, 19, 39, 5, 1, 441, 1, 11, 2025, 23, 1, 3, 7, 125, 51, 13, 1, 729, 55, 7, 57, 29, 1, 225, 1, 31, 3969, 1, 65, 1089, 1, 17, 69, 1225, 1, 27, 1, 37, 5625
Offset: 1

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Crossrefs

Cf. A007955, A007956, A091570 (similar for sum), A136655, A385350 (fixed points).

Programs

  • Maple
    a:= n-> mul(`if`(d::odd, d, 1), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n=1..75);  # Alois P. Heinz, Jun 27 2025
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Table[a[n], {n, 75}]
  • PARI
    a(n) = my(m = n >> valuation(n,2), d = numdiv(m)); if(d % 2, sqrtint(m)^d, m^(d/2)) / if(m < n, 1, n); \\ Amiram Eldar, Jun 27 2025
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A385349(n):
        d = divisor_count(m:=n>>(~n&n-1).bit_length())
        k = isqrt(m)**d if d&1 else m**(d>>1)
        return k//n if n&1 else k # Chai Wah Wu, Jun 27 2025

Formula

a(n) = Product_{d|n, d < n, d odd} d.

A385350 Numbers j such that the product of odd proper divisors of j is j.

Original entry on oeis.org

1, 15, 21, 27, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 125, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299
Offset: 1

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Comments

Fixed points of A385349.
Odd terms in A007422.
Also 1 with odd numbers with exactly 4 divisors. - David A. Corneth, Jun 26 2025

Crossrefs

Programs

  • Maple
    q:= n-> n=1 or n::odd and numtheory[tau](n)=4:
    select(q, [$1..500])[];  # Alois P. Heinz, Jun 26 2025
  • Mathematica
    A385349[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Select[Range[300], A385349[#] == # &]
  • PARI
    isok(k) = vecprod(select((x->((x%2)==1) && (xMichel Marcus, Jun 26 2025
    
  • PARI
    is(n) = (n == 1) || (bitand(n, 1) && numdiv(n) == 4) \\ David A. Corneth, Jun 26 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A385350(n):
        def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jun 27 2025

A384812 If n = Product prime(i)^e(i) then a(n) = Sum prime(e(i)).

Original entry on oeis.org

0, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 5, 2, 4, 4, 7, 2, 5, 2, 5, 4, 4, 2, 7, 3, 4, 5, 5, 2, 6, 2, 11, 4, 4, 4, 6, 2, 4, 4, 7, 2, 6, 2, 5, 5, 4, 2, 9, 3, 5, 4, 5, 2, 7, 4, 7, 4, 4, 2, 7, 2, 4, 5, 13, 4, 6, 2, 5, 4, 6, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 4, 2, 7, 4, 4, 4, 7, 2, 7
Offset: 1

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Programs

  • Maple
    f:= proc(n) local t;
      add(ithprime(t[2]),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 25 2025
  • Mathematica
    Table[Plus @@ (Prime[#[[2]]] & /@ FactorInteger[n]), {n, 1, 90}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, prime(f[k,2])); \\ Michel Marcus, Jun 10 2025

A384815 Sum of the cubes of the exponents in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 8, 1, 2, 1, 27, 8, 2, 1, 9, 1, 2, 2, 64, 1, 9, 1, 9, 2, 2, 1, 28, 8, 2, 27, 9, 1, 3, 1, 125, 2, 2, 2, 16, 1, 2, 2, 28, 1, 3, 1, 9, 9, 2, 1, 65, 8, 9, 2, 9, 1, 28, 2, 28, 2, 2, 1, 10, 1, 2, 9, 216, 2, 3, 1, 9, 2, 3, 1, 35, 1, 2, 9, 9, 2, 3, 1, 65, 64, 2, 1, 10, 2, 2, 2, 28, 1, 10
Offset: 1

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[Plus @@ (#[[2]]^3 & /@ FactorInteger[n]), {n, 2, 90}]]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,2]^3); \\ Michel Marcus, Jun 10 2025

Formula

If n = Product (p_j^k_j) then a(n) = Sum (k_j^3).
From Amiram Eldar, Jul 03 2025: (Start)
Additive with a(p^e) = e^3.
Sum_{k=1..n} a(k) ~ n * log(log(n)) + B_3 * n + O(n/log(n)), where B_3 = gamma + Sum_{p prime} ((1-1/p)*Sum_{m>=1} m^3/p^m + log(1-1/p)) = 16.17021843694072992072..., and gamma is Euler's constant (A001620) (Duncan, 1962). (End)

A384816 Sum of the cubes of the indices of distinct prime factors of n.

Original entry on oeis.org

0, 1, 8, 1, 27, 9, 64, 1, 8, 28, 125, 9, 216, 65, 35, 1, 343, 9, 512, 28, 72, 126, 729, 9, 27, 217, 8, 65, 1000, 36, 1331, 1, 133, 344, 91, 9, 1728, 513, 224, 28, 2197, 73, 2744, 126, 35, 730, 3375, 9, 64, 28, 351, 217, 4096, 9, 152, 65, 520, 1001, 4913, 36, 5832, 1332, 72, 1, 243, 134, 6859, 344, 737, 92
Offset: 1

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Plus @@ (PrimePi[#[[1]]]^3 & /@ FactorInteger[n]), {n, 70}]
    nmax = 70; CoefficientList[Series[Sum[k^3 x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = my(f=factor(n)[,1]); sum(k=1, #f~, primepi(f[k])^3); \\ Michel Marcus, Jun 10 2025

Formula

If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j)^3), where pi = A000720.
G.f.: Sum_{k>=1} k^3 * x^prime(k) / (1 - x^prime(k)).