cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385751 a(n) = Sum_{k=0..n} |Stirling1(n,k)| * (n!/k!)^2.

Original entry on oeis.org

1, 1, 5, 100, 5137, 539851, 101035441, 30669875230, 14117057058945, 9364637252286181, 8603755430968248301, 10603853731438585516856, 17077610933602804111318705, 35160631271792580418277658415, 90839446923946068488317221868825, 289828370988497912073923950177143826, 1126236403418687405801564385561640043521
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 08 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, k]] (n!/k!)^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[Sum[(-Log[1 - x])^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = Sum_{k>=0} (-log(1 - x))^k / k!^3.
a(n) ~ (sqrt(2*Pi/3) * exp(3*log(n)^(1/3) - 3*n) * n^(3*n + 1/2) / log(n)) * (1 - 2/(9*log(n)^(1/3)) + (gamma - 4/81)/log(n)^(2/3) - (40/2187 + 11*gamma/9)/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 09 2025

A385752 a(n) = Sum_{k=0..n} Stirling1(n,k) * (n!/k!)^2.

Original entry on oeis.org

1, 1, -3, 46, -1967, 179351, -29861639, 8200834972, -3456505906559, 2118756407303197, -1811589861406160699, 2089746219541021377546, -3164800617505630505525903, 6151223064132377579849537011, -15052264342298428131766095419839, 45616620088948927404807879986431576, -168785206495071742797011703980958673919
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 08 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, k] (n!/k!)^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[Sum[Log[1 + x]^k/k!^3, {k, 0, nmax}], {x, 0, nmax}], x] Range[0, nmax]!^3

Formula

Sum_{n>=0} a(n) * x^n / n!^3 = Sum_{k>=0} log(1 + x)^k / k!^3.
Showing 1-2 of 2 results.