cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385349 Product of odd proper divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 3, 1, 7, 15, 1, 1, 27, 1, 5, 21, 11, 1, 3, 5, 13, 27, 7, 1, 225, 1, 1, 33, 17, 35, 27, 1, 19, 39, 5, 1, 441, 1, 11, 2025, 23, 1, 3, 7, 125, 51, 13, 1, 729, 55, 7, 57, 29, 1, 225, 1, 31, 3969, 1, 65, 1089, 1, 17, 69, 1225, 1, 27, 1, 37, 5625
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Crossrefs

Cf. A007955, A007956, A091570 (similar for sum), A136655, A385350 (fixed points).

Programs

  • Maple
    a:= n-> mul(`if`(d::odd, d, 1), d=numtheory[divisors](n) minus {n}):
    seq(a(n), n=1..75);  # Alois P. Heinz, Jun 27 2025
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Table[a[n], {n, 75}]
  • PARI
    a(n) = my(m = n >> valuation(n,2), d = numdiv(m)); if(d % 2, sqrtint(m)^d, m^(d/2)) / if(m < n, 1, n); \\ Amiram Eldar, Jun 27 2025
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A385349(n):
        d = divisor_count(m:=n>>(~n&n-1).bit_length())
        k = isqrt(m)**d if d&1 else m**(d>>1)
        return k//n if n&1 else k # Chai Wah Wu, Jun 27 2025

Formula

a(n) = Product_{d|n, d < n, d odd} d.
Showing 1-1 of 1 results.