A059481 Triangle read by rows. T(n, k) = binomial(n+k-1, k) for 0 <= k <= n.
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378
Offset: 0
Examples
The triangle T(n,k), n >= 0, 0 <= k <= n, begins 1 A000217 1 1 / A000292 1 2 3 / A000332 1 3 6 10 / A000389 1 4 10 20 35 / A000579 1 5 15 35 70 126 / 1 6 21 56 126 252 462 1 7 28 84 210 462 924 1716 1 8 36 120 330 792 1716 3432 6435 . T(3,2)=6 considers the CP with the 3^2=9 elements (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), and does not count the 3 of them which are (2,1),(3,1) and (3,2). T(3,3) = 10 because the ways to distribute the 3 objects into the three containers are: (3,0,0) (0,3,0) (0,0,3) (2,1,0) (1,2,0) (2,0,1) (1,0,2) (0,1,2) (0,2,1) (1,1,1), for a total of 10 possibilities. T(3,3)=10 since (x^2/(x-1))^3 = (x+1+1/x+O(1/x^2))^3 = x^3+3x^2+6x+10+O(x). T(4,2)=10 since there are 10 nondecreasing functions f from {1,2} to {1,2,3,4}. Using <f(1),f(2)> to denote such a function, the ten functions are <1,1>, <1,2>, <1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, and <4,4>. - _Dennis P. Walsh_, Apr 07 2011 T(4,0) + T(4,1) + T(4,2) + T(4,3) = 1 + 4 + 10 + 20 = 35 = T(4,4). - _Jonathan Sondow_, Jun 28 2014 From _Paul Curtz_, Jun 18 2018: (Start) Consider the array 2, 1, 1, 1, 1, 1, ... = A054977(n) 1, 1/2, 1/3, 1/4, 1/5, 1/6, ... = 1/(n+1) = 1/A000027(n) 1/3, 1/6, 1/10, 1/15, 1/21, 1/28, ... = 2/((n+2)*(n+3)) = 1/A000217(n+2) 1/10, 1/20, 1/35, 1/56, 1/84, 1/120, ... = 6/((n+3)*(n+4)*(n+5)) =1/A000292(n+2) (see the triangle T(n,k)). Every row is an autosequence of the second kind. (See OEIS Wiki, Autosequence.) By decreasing antidiagonals the denominator of the array is a(n). Successive vertical denominators: A088218(n), A000984(n), A001700(n), A001791(n+1), A002054(n), A002694(n). Successive diagonal denominators: A165817(n), A005809(n), A045721(n), A025174(n+1), A004319(n). (End) Without the first row (2, 1, 1, 1, ... ), the array leads to A165257(n) instead of a(n). - _Paul Curtz_, Jun 19 2018
References
- R. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, 4th edition, chapter 1.4.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, (referring to A158498 before recycling)
- M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, and C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014 and J. Int. Seq. 18 (2015) 15.10.6.
- C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv:1502.06553 [math.RT], 2015.
- Dennis Walsh, Notes on finite monotonic and non-monotonic functions
Crossrefs
Columns: T(n,1) = A000027(n), n >= 1. T(n,2) = A000217(n) = A161680(n+1), n >= 2. T(n,3) = A000292(n), n >= 3. T(n,4) = A000332(n+3), n >= 4. T(n,5) = A000389(n+4), n >= 5. T(n,6) = A000579(n+5), n >=6. T(n,k) = A001405(n+k-1) for k <= n <= k+2. [Corrected and extended by M. F. Hasler, Mar 05 2017]
T(n,k) = A046899(n-1,k). - R. J. Mathar, Mar 26 2009
Take Pascal's triangle A007318, delete entries to the right of a vertical line just right of center, then scan the diagonals.
For a signed version of this triangle see A027555.
Row sums give A000984.
Programs
-
GAP
Flat(List([0..10], n->List([0..n], k->Binomial(n+k-1, k)))); # Stefano Spezia, Oct 30 2018
-
Haskell
a059481 n k = a059481_tabl !! n !! n a059481_row n = a059481_tabl !! n a059481_tabl = map reverse a100100_tabl -- Reinhard Zumkeller, Jan 15 2014
-
Magma
&cat [[&*[ Binomial(n+k-1,k)]: k in [0..n]]: n in [0..30] ]; // Vincenzo Librandi, Apr 08 2011
-
Maple
for n from 0 to 10 do for k from 0 to n do print(binomial(n+k-1,k)) ; od: od: # R. J. Mathar, Mar 31 2009
-
Mathematica
t[n_, k_] := Binomial[n+k-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 09 2013 *) (* The combinatorial objects defined in the first comment can, for n >= 1, be generated by: *) r[n_, k_] := FrobeniusSolve[ConstantArray[1,n],k]; (* Peter Luschny, Jan 24 2019 *)
-
Maxima
sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 0 thru n do disp(sjoin(makelist(binomial(i+j-1, j), j, 0, i), " ")); display_triangle(10); /* triangle output */ /* Stefano Spezia, Oct 30 2018 */
-
PARI
{T(n, k) = binomial( n+k-1, k)}; \\ Michael Somos, Sep 09 2003, edited by M. F. Hasler, Mar 05 2017
-
PARI
{T(n, k) = if( n<0, 0, polcoeff( Pol(((1 / (x - x^2) + x * O(x^n))^n + O(x)) * x^n), k))}; /* Michael Somos, Sep 09 2003 */
-
Sage
[[binomial(n+k-1,k) for k in range(n+1)] for n in range(11)] # G. C. Greubel, Nov 21 2018
Formula
T(n,0) + T(n,1) + . . . + T(n,n-1) = T(n,n). - Jonathan Sondow, Jun 28 2014
From Peter Bala, Jul 21 2015: (Start)
T(n, k) = Sum_{j = k..n} (-1)^(k+j)*binomial(2*n,n+j)*binomial(n+j-1,j)* binomial(j,k) (gives the correct value T(n,k) = 0 for k > n).
O.g.f.: 1/2*( x*(2*x - 1)/(sqrt(1 - 4*t*x)*(1 - x - t)) + (1 + 2*x)/sqrt(1 - 4*t*x) + (1 - t)/(1 - x - t) ) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ....
n-th row polynomial R(n,t) = [x^n] ( (1 + x)^2/(1 + x(1 - t)) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + t)*x + (1 + 2*t + 2*t^2)*x^2 + (1 + 3*t + 5*t^2 + 5*t^3)*x^3 + ... is the o.g.f for A009766. (End)
a(n) = abs(A027555(n)). - M. F. Hasler, Mar 05 2017
For n >= k > 0, T(n, k) = Sum_{j=1..n} binomial(k + j - 2, k - 1) = Sum_{j=1..n} A007318(k + j - 2, k - 1). - Stefano Spezia, Oct 30 2018
T(n, k) = RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023
Extensions
Offset changed from 1 to 0 by R. J. Mathar, Jan 15 2013
Edited by M. F. Hasler, Mar 05 2017
Comments