A007778
a(n) = n^(n+1).
Original entry on oeis.org
0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 67.
Cf.
A000169,
A000272,
A000312,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008790,
A008791,
A135608.
-
[n^(n+1):n in [0..20]]; // Vincenzo Librandi, Jan 03 2012
-
seq( n^(n+1), n=0..20); # G. C. Greubel, Mar 05 2020
-
Table[n^(n+1), {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Oct 01 2008 *)
-
A007778[n]:=n^(n+1)$
makelist(A007778[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
vector(21, n, my(m=n-1); m^(m+1)) \\ G. C. Greubel, Mar 05 2020
-
[n^(n+1) for n in (0..20)] # G. C. Greubel, Mar 05 2020
A088956
Triangle, read by rows, of coefficients of the hyperbinomial transform.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 16, 9, 3, 1, 125, 64, 18, 4, 1, 1296, 625, 160, 30, 5, 1, 16807, 7776, 1875, 320, 45, 6, 1, 262144, 117649, 27216, 4375, 560, 63, 7, 1, 4782969, 2097152, 470596, 72576, 8750, 896, 84, 8, 1, 100000000, 43046721, 9437184, 1411788, 163296, 15750
Offset: 0
Rows begin:
{1},
{1, 1},
{3, 2, 1},
{16, 9, 3, 1},
{125, 64, 18, 4, 1},
{1296, 625, 160, 30, 5, 1},
{16807, 7776, 1875, 320, 45, 6, 1},
{262144, 117649, 27216, 4375, 560, 63, 7, 1}, ...
-
a088956 n k = a095890 (n + 1) (k + 1) * a007318' n k `div` (n - k + 1)
a088956_row n = map (a088956 n) [0..n]
a088956_tabl = map a088956_row [0..]
-- Reinhard Zumkeller, Jul 07 2013
-
nn=8; t=Sum[n^(n-1)x^n/n!, {n,1,nn}]; Range[0,nn]! CoefficientList[Series[Exp[t+y x] ,{x,0,nn}], {x,y}] //Grid (* Geoffrey Critzer, Nov 10 2012 *)
A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A302583
a(n) = ((n + 1)^n - (n - 1)^n)/2.
Original entry on oeis.org
0, 1, 4, 28, 272, 3376, 51012, 908608, 18640960, 432891136, 11225320100, 321504185344, 10079828372880, 343360783937536, 12627774819845668, 498676704524517376, 21046391759976988928, 945381827279671853056, 45032132922921758270916, 2267322327322331161821184
Offset: 0
Cf.
A000169,
A065440,
A007778,
A062024,
A115416,
A274278,
A293022,
A302584,
A302585,
A302586,
A302587.
-
Table[((n + 1)^n - (n - 1)^n)/2, {n, 0, 19}]
nmax = 19; CoefficientList[Series[(x^2 - LambertW[-x]^2)/(2 x LambertW[-x] (1 + LambertW[-x])), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! SeriesCoefficient[Exp[n x] Sinh[x], {x, 0, n}], {n, 0, 19}]
A055134
Triangle read by rows: T(n,k) = number of labeled endofunctions on n points with k fixed points.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 8, 12, 6, 1, 81, 108, 54, 12, 1, 1024, 1280, 640, 160, 20, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 5764801, 6588344, 3294172, 941192, 168070, 19208, 1372, 56, 1, 134217728
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 2, 1;
8, 12, 6, 1;
81, 108, 54, 12, 1;
1024, 1280, 640, 160, 20, 1;
15625, 18750, 9375, 2500, 375, 30, 1;
279936, 326592, 163296, 45360, 7560, 756, 42, 1;
...
-
Clear[B] B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0]; Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
row[n_] := CoefficientList[(x + n - 1)^n + O[x]^(n+1), x];
Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 13 2017, after Geoffrey Critzer *)
Join[{1, 0, 1}, Table[Binomial[n, k]*(n - 1)^(n - k), {n, 2, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 14 2017 *)
-
for(n=0,15, for(k=0,n, print1(if(n==0 && k==0, 1, if(n==1 && k==0, 0, if(n==1 && k==1, 1, binomial(n,k)*(n-1)^(n-k)))), ", "))) \\ G. C. Greubel, Nov 14 2017
A085606
a(n) = (n-1)^n - 1.
Original entry on oeis.org
0, -1, 0, 7, 80, 1023, 15624, 279935, 5764800, 134217727, 3486784400, 99999999999, 3138428376720, 106993205379071, 3937376385699288, 155568095557812223, 6568408355712890624, 295147905179352825855, 14063084452067724991008, 708235345355337676357631
Offset: 0
A284458
Number of pairs (f,g) of endofunctions on [n] such that the composite function gf has no fixed point.
Original entry on oeis.org
1, 0, 2, 156, 16920, 2764880, 650696400, 210105425628, 89425255439744, 48588905856409920, 32845298636854828800, 27047610425293718239100, 26664178085975252011318272, 31009985808408471580603417296, 42017027730087624384021945067520
Offset: 0
For two boys A,B and two girls A',B', the a(2) possibilities are:
A loves A' who loves B who loves B' who loves A;
A loves B' who loves B who loves A' who loves A.
-
a:=n->add((-1)^k*binomial(n,k)^2*k!*n^(2*(n-k)),k=0..n):
seq(a(n),n=0..15);
-
Table[Sum[(-1)^k Binomial[n,k]^2 * k! * n^(2*(n - k)), {k, 0, n}], {n, 1, 15}] (* Indranil Ghosh, Mar 27 2017 *)
Table[HypergeometricU[-n, 1, n^2], {n, 1, 15}] (* Jean-François Alcover, Mar 29 2017 *)
-
a(n) = sum(k=0, n, (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k))); \\ Michel Marcus, Apr 04 2017
A349454
Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 1;
8, 3, 0, 1;
81, 32, 6, 0, 1;
1024, 405, 80, 10, 0, 1;
15625, 6144, 1215, 160, 15, 0, 1;
279936, 109375, 21504, 2835, 280, 21, 0, 1;
5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
...
-
T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
seq(seq(T(n, k), k=0..n), n=0..10);
A134362
a(n) is the number of functions f:X->X, where |X| = n, such that for every x in X, f(f(x)) != x (i.e., the square of the function has no fixed points; note this implies that the function has no fixed points).
Original entry on oeis.org
1, 0, 0, 2, 30, 444, 7360, 138690, 2954364, 70469000, 1864204416, 54224221050, 1721080885480, 59217131089908, 2195990208122880, 87329597612123594, 3707783109757616400, 167411012044894728720, 8010372386879991018496, 404912918159552083622130
Offset: 0
Adam Day (adam.r.day(AT)gmail.com), Jan 17 2008
a(3) = 2 because given a three-element set X:= {A, B, C} the only functions whose square has no fixed points are f:X->X where f(A)=B, f(B)=C, f(C)=A and g:X->X where g(A)=C, g(B)=A, g(C)=B.
- Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
- Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
-
a:= n -> (n-1)^n + add((-1)^i*mul(binomial(n-2*(j-1),2),j=1..i)*(n-1)^(n-2*i)/i!,i=1..floor(n/2)): seq(a(n), n=0..20);
-
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[-t - t^2/2]/(1 - t), {x, 0, nn}], x], 1] (* Geoffrey Critzer, Feb 06 2012 *)
-
a(n) = n!*sum(q=0, n\2, ((-1)^q/(2^q*q!)*(n-1)^(n-2*q)/(n-2*q)!)); \\ Michel Marcus, Mar 09 2016
A204042
The number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that all of the fixed points in f are isolated.
Original entry on oeis.org
1, 1, 2, 12, 120, 1520, 23160, 413952, 8505280, 197631072, 5125527360, 146787894440, 4601174623584, 156693888150384, 5761055539858528, 227438694372072120, 9596077520725211520, 430920897407809702208, 20520683482765477749120, 1032920864149903149579336, 54797532208320308334631840
Offset: 0
a(2)=2 because there are two functions f:{1,2}->{1,2} in which all the fixed points are isolated: 1->1,2->2 and 1->2,2->1 (which has no fixed points).
-
a:= n-> add((j-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 16 2021
-
t = Sum[n^(n-1) x^n/n!, {n,1,20}]; Range[0,20]! CoefficientList[Series[Exp[x] Exp[Log[1/(1-t)]-t], {x,0,20}], x]
Showing 1-10 of 20 results.
Comments