A055135
Matrix inverse of triangle A055134.
Original entry on oeis.org
1, 0, 1, -1, -2, 1, -2, 0, -6, 1, -3, 0, 18, -12, 1, -4, 0, -40, 80, -20, 1, -5, 0, 75, -400, 225, -30, 1, -6, 0, -126, 1680, -1890, 504, -42, 1, -7, 0, 196, -6272, 13230, -6272, 980, -56, 1, -8, 0, -288, 21504, -81648, 64512, -16800, 1728, -72, 1, -9, 0, 405
Offset: 0
1;
0,1;
-1,-2,1;
-2,0,-6,1;
-3,0,18,-12,1;
...
-
rows = 12; row[n_] := Join[CoefficientList[(x+n-1)^n + O[x]^(n+1), x], Table[0, {rows-n-1}]]; M = Inverse[Table[row[n], {n, 0, rows-1}]]; Table[ M[[n+1, k+1]], {n, 0, rows-1}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 14 2017 *)
Original entry on oeis.org
1, 2, 2, 12, 12, 3, 108, 108, 36, 4, 1280, 1280, 480, 80, 5, 18750, 18750, 7500, 1500, 150, 6, 326592, 326592, 136080, 30240, 3780, 252, 7, 6588344, 6588344, 2823576, 672280, 96040, 8232, 392, 8
Offset: 1
Triangle begins
1
2 2
12 12 3
108 108 36 4
1280 1280 480 80 5
18750 18750 7500 1500 150 6
-
Flatten[CoefficientList[Table[Series[n((n-1)+x)^(n-1),{x,0,20}],{n,1,8}],x]]
A137370
Triangle: signed version of A055134.
Original entry on oeis.org
1, 0, 1, 1, -2, 1, -8, 12, -6, 1, 81, -108, 54, -12, 1, -1024, 1280, -640, 160, -20, 1, 15625, -18750, 9375, -2500, 375, -30, 1, -279936, 326592, -163296, 45360, -7560, 756, -42, 1, 5764801, -6588344, 3294172, -941192, 168070, -19208, 1372, -56, 1, -134217728, 150994944, -75497472, 22020096, -4128768
Offset: 1
{1},
{0, 1},
{1, -2, 1},
{-8, 12, -6, 1},
{81, -108, 54, -12, 1},
{-1024, 1280, -640, 160, -20, 1},
{15625, -18750, 9375, -2500, 375, -30, 1},
{-279936, 326592, -163296, 45360, -7560, 756, -42, 1},...
-
B[0] = {{x, y}, {t*y, x}}; B[n_] := B[n] = B[n - 1].B[0];
Table[Det[B[n]] /. x -> Sqrt[z] /. y -> 1 /. t -> n, {n, 0, 10}];
a = Join[{{1}}, Table[CoefficientList[Det[B[n]] /. x -> Sqrt[z] /. y ->1 /. t -> n, z], {n, 0, 10}]];
Flatten[a]
A065440
a(n) = (n-1)^n.
Original entry on oeis.org
1, 0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0
Essentially the same as
A007778 - note T(x) = -W(-x).
A349454
Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 0, 1;
8, 3, 0, 1;
81, 32, 6, 0, 1;
1024, 405, 80, 10, 0, 1;
15625, 6144, 1215, 160, 15, 0, 1;
279936, 109375, 21504, 2835, 280, 21, 0, 1;
5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
...
-
T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
seq(seq(T(n, k), k=0..n), n=0..10);
A350212
Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0
T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
1;
0, 1;
3, 0, 1;
17, 9, 0, 1;
169, 68, 18, 0, 1;
2079, 845, 170, 30, 0, 1;
31261, 12474, 2535, 340, 45, 0, 1;
554483, 218827, 43659, 5915, 595, 63, 0, 1;
11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10);
# second Maple program:
A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n):
seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
A350446
Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0
Triangle T(n,k) begins:
1;
1;
3, 1;
16, 11;
125, 128, 3;
1296, 1734, 95;
16807, 27409, 2425, 15;
262144, 499400, 61054, 945;
4782969, 10346328, 1605534, 42280, 105;
100000000, 240722160, 44981292, 1706012, 11025;
2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
A185070
Triangular array read by rows. T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} that have exactly k 3-cycles. n>=0, 0<=k<=floor(n/3).
Original entry on oeis.org
1, 1, 4, 25, 2, 224, 32, 2625, 500, 38056, 8560, 40, 657433, 164150, 1960, 13178880, 3526656, 71680, 300585601, 84389928, 2442720, 2240, 7683776000, 2232672000, 83328000, 224000, 217534555161, 64830707370, 2931500880, 14907200
Offset: 0
1;
1;
4;
25, 2;
224, 32;
2625, 500;
38056, 8560, 40;
657433, 164150, 1960;
13178880, 3526656, 71680;
300585601, 84389928, 2442720, 2240;
...
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t^3/3(y-1)]/(1-t),{x,0,nn}],{x,y}]//Grid
Showing 1-8 of 8 results.
Comments