cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Roger L. Bagula

Roger L. Bagula's wiki page.

Roger L. Bagula has authored 3767 sequences. Here are the ten most recent ones:

A362455 Squarefree positive integers d such that the dimension of the space of cuspidal harmonic automorphic forms for SL(2, O_{-d}) is zero, where O_{-d} is the ring of integers in Q(sqrt(-d)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71
Offset: 1

Author

Gary W. Adamson and N. J. A. Sloane, May 06 2023, following a suggestion from Roger L. Bagula

Keywords

Comments

Reid, Alan W., and Colin MacLachlan. "The Arithmetic of hyperbolic 3-manifolds." Graduate Texts in Mathematics 219, Springer (2003).

A321044 Irregular table related to f[(a*x+b)/(c*x+d)]=(c*x+d)^(2*n)*f[x], and f[x]=1/(x+1), f[x]=(a*x+b)/(c*x+d).

Original entry on oeis.org

1, 1, 1, 1, 5, 4, 1, 1, 9, 16, 14, 6, 1, 1, 13, 36, 55, 50, 27, 8, 1, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 1, 25, 144, 506, 1210, 2079, 2640, 2508, 1782, 935, 352, 90, 14, 1, 1, 29, 196, 819, 2366, 5005, 8008, 9867, 9438, 7007
Offset: 0

Author

Roger L. Bagula, Oct 26 2018

Keywords

Comments

The author writes: This derivation is an interesting Fibonacci modular form. The modular form function is: f[(a*x+b)/(c*x+d)] = (c*x+d)^(2*n)*f[x] and I have used f[x]=1/(x+1) and f[x]=(a*x+b)/(c*x+d) for Möbius function matrix: {{0,1},{1,1}}. The polynomial is solved as a zero based form.
The graph of the root structures of the polynomial are mostly on a circle with center at -1, see Mathematica.

Examples

			{{1},
{1, 1},
{1, 5, 4, 1},
{1, 9, 16, 14, 6, 1},
{1, 13, 36, 55, 50, 27, 8,  1},
{1, 17, 64, 140, 196, 182, 112, 44, 10, 1},
{1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1},
{1, 25, 144, 506, 1210, 2079, 2640, 2508, 1782,  935, 352, 90, 14, 1},
{1, 29, 196, 819, 2366, 5005, 8008, 9867, 9438, 7007, 4004, 1729, 546, 119, 16, 1},
{1, 33, 256, 1240, 4200, 10556, 20384, 30888,37180, 35750, 27456, 16744, 8008, 2940, 800, 152, 18, 1},
{1, 37, 324, 1785,6936, 20196, 45696, 82212, 119340, 140998, 136136, 107406, 68952, 35700, 14688, 4692, 1122, 189, 20, 1}}
		

Programs

  • Mathematica
    g[x_, n_] = If[n == 0, 1, (2 + x)*(1 + x)^(-1 + 2 n)/(1 + x) - 1]
    Show[Table[ListPlot[{Re[x], Im[x]} /. NSolve[g[x, n] == 0, x], PlotStyle -> Red], {n, 1, 10}]]
    a = Table[CoefficientList[g[x, n], x], {n, 0, 10}] (* Roger L. Bagula, Oct 26 2018 *)
    row[n_] = If[n > 0, CoefficientList[(x+2)*(x+1)^(2n-2)-1, x], {1}]; (* Charles R Greathouse IV, Oct 30 2018 *)
  • PARI
    row(n)=if(n, Vec((x+2)*(x+1)^(2*n-2)-1), [1]) \\ Charles R Greathouse IV, Oct 30 2018

Formula

For n > 0, the n-th row sum is 3*2^(2n-2) - 1. - Charles R Greathouse IV, Oct 30 2018

A297189 Expansion of (x + 3*x^2 - 2*x^3 - 3*x^4)/(1 - 8*x^2 + 9*x^4).

Original entry on oeis.org

0, 1, 3, 6, 21, 39, 141, 258, 939, 1713, 6243, 11382, 41493, 75639, 275757, 502674, 1832619, 3340641, 12179139, 22201062, 80939541, 147542727, 537904077, 980532258, 3574776747, 6516373521, 23757077283, 43306197846, 157883627541, 287802221079
Offset: 0

Author

N. J. A. Sloane, Jan 04 2018, following a suggestion from Roger L. Bagula

Keywords

Comments

Related to a tiling of the plane by heptagons.

Programs

  • PARI
    concat(0, Vec((x + 3*x^2 - 2*x^3 - 3*x^4)/(1 - 8*x^2 + 9*x^4) + O(x^40))) \\ Colin Barker, Jan 05 2018

Formula

a(n) = 8*a(n-2) - 9*a(n-4). - Colin Barker, Jan 05 2018
a(2*n)/a(2*n-1) ~ 2*a(2*n+1)/a(2*n) ~ 1 + sqrt(7). - Kyle MacLean Smith, Oct 11 2019

A291311 Expansion of (1-x^2)/((1-x-x^2)*(1-x-x^4)).

Original entry on oeis.org

1, 2, 3, 5, 9, 16, 27, 45, 75, 125, 207, 341, 560, 918, 1502, 2453, 4000, 6515, 10601, 17235, 28000, 45461, 73773, 119665, 194033, 314519, 509685, 825768, 1337612, 2166360, 3508085, 5680122, 9196043, 14886981, 24097953, 39005540, 63131935, 102176733, 165362855, 267614381
Offset: 0

Author

Roger L. Bagula, Aug 21 2017

Keywords

Crossrefs

Cf. A131298.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1,1,-1,-1},{1,2,3,5,9,16},40] (* Harvey P. Dale, Apr 18 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((1 - x^2)/((1-x-x^2)*(1-x-x^4))) \\ Michel Marcus, Jun 25 2023

Formula

G.f.: (1-x^2)/((1-x-x^2)*(1-x-x^4)).

A260994 Numbers n such that the modular curve X_0(n) has genus >= 2 and contains infinitely many points of degree 2 over some number field L.

Original entry on oeis.org

22, 23, 26, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 65, 69, 71, 72, 75, 79, 81, 83, 89, 92, 94, 95, 101, 119, 131
Offset: 1

Author

N. J. A. Sloane, Aug 08 2015, following a suggestion from Roger L. Bagula, Jul 22 2015

Keywords

Crossrefs

A260993 Numbers n such that the modular curve X_0(n) contains infinitely many rational points of degree 2.

Original entry on oeis.org

22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 43, 46, 47, 48, 50, 53, 59, 61, 65, 71, 79, 83, 89, 101, 131
Offset: 1

Author

N. J. A. Sloane, Aug 08 2015, following a suggestion from Roger L. Bagula, Jul 22 2015

Keywords

Crossrefs

A260992 Numbers n such that the modular curves X(n) and X_1(n) are not bielliptic.

Original entry on oeis.org

52, 57, 58, 66, 67, 68, 70, 73, 74, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134
Offset: 1

Author

N. J. A. Sloane, Aug 08 2015, following a suggestion from Roger L. Bagula, Jul 22 2015

Keywords

Comments

The list includes all n >= 132.

Crossrefs

A260991 Numbers n such that the modular curve X_0(n) has a bielliptic involution of Atkin-Lehner type.

Original entry on oeis.org

22, 26, 28, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 50, 51, 53, 54, 55, 56, 60, 61, 62, 63, 64, 65, 69, 75, 79, 81, 83, 89, 92, 94, 95, 101, 119, 131
Offset: 1

Author

N. J. A. Sloane, Aug 08 2015, following a suggestion from Roger L. Bagula, Jul 22 2015

Keywords

Crossrefs

Same as A260990 except that now 72 is excluded.

A260990 Numbers n such that the modular curve X_0(n) is bielliptic.

Original entry on oeis.org

22, 26, 28, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 50, 51, 53, 54, 55, 56, 60, 61, 62, 63, 64, 65, 69, 72, 75, 79, 81, 83, 89, 92, 94, 95, 101, 119, 131
Offset: 1

Author

N. J. A. Sloane, Aug 08 2015, following a suggestion from Roger L. Bagula, Jul 22 2015

Keywords

References

  • J. S. Balakrishnan, B. Mazur, and N. Dogra, Ogg's torsion conjecture: fifty years later, Bull. Amer. Math. Soc., 62:2 (2025), 235-268.

Crossrefs

A245560 Row sums of triangle in A144480.

Original entry on oeis.org

1, 2, 6, 14, 36, 82, 196, 436, 1000, 2186, 4884, 10540, 23128, 49428, 107048, 227048, 486864, 1026394, 2183860, 4581244, 9686776, 20237372, 42571896, 88632664, 185653936, 385380932, 804316296, 1665340856, 3464899440, 7158117736, 14853106384
Offset: 0

Author

Roger L. Bagula, Oct 11 2008

Keywords

Crossrefs

Cf. A144480.

Programs

  • Maple
    f:=n->if (n mod 2) = 0 then (n+2)*2^(n-1)-(n/2)*binomial(n,n/2)
    else (n+2)*2^(n-1)-((n+1)/4)*binomial(n+1,(n+1)/2); fi;
    [seq(f(n),n=0..40)];

Formula

From N. J. A. Sloane, Aug 07 2014: if n is even, a(n) = (n+2)*2^(n-1)-(n/2)*binomial(n,n/2) otherwise a(n) = (n+2)*2^(n-1)-((n+1)/4)*binomial(n+1,(n+1)/2). This follows easily from the definition.

Extensions

Edited with more terms by N. J. A. Sloane, Aug 07 2014