A350212
Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0
T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
1;
0, 1;
3, 0, 1;
17, 9, 0, 1;
169, 68, 18, 0, 1;
2079, 845, 170, 30, 0, 1;
31261, 12474, 2535, 340, 45, 0, 1;
554483, 218827, 43659, 5915, 595, 63, 0, 1;
11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10);
# second Maple program:
A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n):
seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
A204042
The number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that all of the fixed points in f are isolated.
Original entry on oeis.org
1, 1, 2, 12, 120, 1520, 23160, 413952, 8505280, 197631072, 5125527360, 146787894440, 4601174623584, 156693888150384, 5761055539858528, 227438694372072120, 9596077520725211520, 430920897407809702208, 20520683482765477749120, 1032920864149903149579336, 54797532208320308334631840
Offset: 0
a(2)=2 because there are two functions f:{1,2}->{1,2} in which all the fixed points are isolated: 1->1,2->2 and 1->2,2->1 (which has no fixed points).
-
a:= n-> add((j-1)^j*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 16 2021
-
t = Sum[n^(n-1) x^n/n!, {n,1,20}]; Range[0,20]! CoefficientList[Series[Exp[x] Exp[Log[1/(1-t)]-t], {x,0,20}], x]
A350454
Number T(n,k) of endofunctions on [n] with exactly k fixed points, none of which are isolated; triangle T(n,k), n >= 0, 0 <= k <= n/2, read by rows.
Original entry on oeis.org
1, 0, 1, 2, 8, 9, 81, 76, 12, 1024, 875, 180, 15625, 12606, 2910, 120, 279936, 217217, 53550, 3780, 5764801, 4348856, 1118936, 102480, 1680, 134217728, 99111735, 26280072, 2817360, 90720, 3486784401, 2532027610, 686569050, 81864720, 3729600, 30240
Offset: 0
Triangle T(n,k) begins:
1;
0;
1, 2;
8, 9;
81, 76, 12;
1024, 875, 180;
15625, 12606, 2910, 120;
279936, 217217, 53550, 3780;
5764801, 4348856, 1118936, 102480, 1680;
134217728, 99111735, 26280072, 2817360, 90720;
3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
A350446
Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
Original entry on oeis.org
1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0
Triangle T(n,k) begins:
1;
1;
3, 1;
16, 11;
125, 128, 3;
1296, 1734, 95;
16807, 27409, 2425, 15;
262144, 499400, 61054, 945;
4782969, 10346328, 1605534, 42280, 105;
100000000, 240722160, 44981292, 1706012, 11025;
2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
...
-
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(
b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
-
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments