cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086331 Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533
Offset: 0

Views

Author

Vladeta Jovovic, Sep 01 2003

Keywords

Comments

Binomial transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions. See comments in A000169 and A126285 by Franklin T. Adams-Watters. - Geoffrey Critzer, Dec 19 2011

Examples

			a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*k^k, k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 30 2021
  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x]  (* Geoffrey Critzer, Dec 19 2011 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*k^k.
a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - Vaclav Kotesovec, Nov 27 2012
G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - Seiichi Manyama, Jul 04 2022

A349454 Number T(n,k) of endofunctions on [n] with exactly k fixed points, all of which are isolated; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 8, 3, 0, 1, 81, 32, 6, 0, 1, 1024, 405, 80, 10, 0, 1, 15625, 6144, 1215, 160, 15, 0, 1, 279936, 109375, 21504, 2835, 280, 21, 0, 1, 5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1, 134217728, 51883209, 10077696, 1312500, 129024, 10206, 672, 36, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2021

Keywords

Examples

			Triangle T(n,k) begins:
        1;
        0,       1;
        1,       0,      1;
        8,       3,      0,     1;
       81,      32,      6,     0,    1;
     1024,     405,     80,    10,    0,   1;
    15625,    6144,   1215,   160,   15,   0,  1;
   279936,  109375,  21504,  2835,  280,  21,  0, 1;
  5764801, 2239488, 437500, 57344, 5670, 448, 28, 0, 1;
  ...
		

Crossrefs

Column k=0 gives A065440.
Row sums give A204042.
Main diagonal and first lower diagonal give A000012, A000004.
T(n+1,n-1) gives A000217.
T(n+3,n) gives A130809.
T(n+3,n-1) gives A102741 for n>=1.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*(n-k-1)^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = binomial(n,k) * (n-k-1)^(n-k).
From Mélika Tebni, Apr 02 2023: (Start)
E.g.f. of column k: -x / (LambertW(-x)*(1+LambertW(-x)))*x^k / k!.
Sum_{k=0..n} k^k*T(n,k) = A217701(n). (End)

A350134 Number of endofunctions on [n] with at least one isolated fixed point.

Original entry on oeis.org

0, 1, 1, 10, 87, 1046, 15395, 269060, 5440463, 124902874, 3208994379, 91208536112, 2841279322871, 96258245162678, 3523457725743059, 138573785311560916, 5827414570508386335, 260928229315498155314, 12393729720071855683739, 622422708333615857463608
Offset: 0

Views

Author

Alois P. Heinz, Dec 15 2021

Keywords

Examples

			a(3) = 10: 123, 122, 133, 132, 121, 323, 321, 113, 223, 213.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
          b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
         b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1, n}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)

Formula

a(n) = A000312(n) - abs(A069856(n)).
a(n) = Sum_{k=1..n} A350212(n,k).
Showing 1-3 of 3 results.