cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347999 Triangular array read by rows: T(n,k) is the number of endofunctions f:{1,2,...,n}-> {1,2,...,n} whose smallest connected component has exactly k nodes; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 10, 0, 17, 0, 87, 27, 0, 142, 0, 1046, 510, 0, 0, 1569, 0, 15395, 6795, 2890, 0, 0, 21576, 0, 269060, 114912, 84490, 0, 0, 0, 355081, 0, 5440463, 2332029, 1493688, 705740, 0, 0, 0, 6805296, 0, 124902874, 53389746, 32186168, 28072548, 0, 0, 0, 0, 148869153
Offset: 0

Views

Author

Steven Finch, Sep 23 2021

Keywords

Comments

Here component means weakly connected component in the functional digraph of f.
If the mapping has no component, then the smallest component is defined to have size 0.
For the statistic "length of the largest component", see A209324.

Examples

			Triangle begins:
  1;
  0,       1;
  0,       1,       3;
  0,      10,       0,      17;
  0,      87,      27,       0,    142;
  0,    1046,     510,       0,      0, 1569;
  0,   15395,    6795,    2890,      0,    0, 21576;
  0,  269060,  114912,   84490,      0,    0,     0, 355081;
  0, 5440463, 2332029, 1493688, 705740,    0,     0,      0, 6805296;
  ...
		

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 8.

Crossrefs

Columns k=0-1 give: A000007, A350134.
Row sums give A000312.
Right border gives A001865.
T(2n,n) gives A350135.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
          b(n-i, min(m, i))*binomial(n-1, i-1), i=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Dec 16 2021
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*b[n - i, Min[m, i]]* Binomial[n - 1, i - 1], {i, 1, n}]];
    T[n_] := With[{p = b[n, n]},  Table[Coefficient[p, x, i], {i, 0, n}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

T(n,n) = A001865(n) for n >= 1.
Sum_{k=1..n} k * T(n,k) = A350157(n). - Alois P. Heinz, Dec 17 2021

Extensions

Edited by Alois P. Heinz, Dec 15 2021

A350212 Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 19 2021

Keywords

Examples

			T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
         1;
         0,       1;
         3,       0,      1;
        17,       9,      0,      1;
       169,      68,     18,      0,     1;
      2079,     845,    170,     30,     0,   1;
     31261,   12474,   2535,    340,    45,   0,  1;
    554483,  218827,  43659,   5915,   595,  63,  0, 1;
  11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
  ...
		

Crossrefs

Columns k=0-1 give: |A069856|, A348590.
Row sums give A000312.
T(n+1,n-1) gives A045943.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
          b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);
    # second Maple program:
    A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n):
    seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
         b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A055897(n).
Sum_{k=1..n} T(n,k) = A350134(n).
From Mélika Tebni, Nov 24 2022: (Start)
T(n,k) = binomial(n, k)*|A069856(n-k)|.
E.g.f. column k: exp(-x)*x^k / ((1 + LambertW(-x))*k!).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j, k)*binomial(n, j)*(n-j)^(n-j). (End)

A204042 The number of functions f:{1,2,...,n}->{1,2,...,n} (endofunctions) such that all of the fixed points in f are isolated.

Original entry on oeis.org

1, 1, 2, 12, 120, 1520, 23160, 413952, 8505280, 197631072, 5125527360, 146787894440, 4601174623584, 156693888150384, 5761055539858528, 227438694372072120, 9596077520725211520, 430920897407809702208, 20520683482765477749120, 1032920864149903149579336, 54797532208320308334631840
Offset: 0

Views

Author

Geoffrey Critzer, Jan 09 2012

Keywords

Comments

Note this sequence counts the functions enumerated by A065440 for which the statement is vacuously true.
a(n) is also the number of partial endofunctions on {1,2,...,n} without fixed points.

Examples

			a(2)=2 because there are two functions f:{1,2}->{1,2} in which all the fixed points are isolated: 1->1,2->2  and 1->2,2->1 (which has no fixed points).
		

Crossrefs

Row sums of A349454.

Programs

  • Maple
    a:= n-> add((j-1)^j*binomial(n, j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 16 2021
  • Mathematica
    t = Sum[n^(n-1) x^n/n!, {n,1,20}]; Range[0,20]! CoefficientList[Series[Exp[x] Exp[Log[1/(1-t)]-t], {x,0,20}], x]

Formula

E.g.f.: exp(x)*A(x) where A(x) is the e.g.f. for A065440.
a(n) ~ exp(exp(-1)-1)*n^n. - Vaclav Kotesovec, Sep 24 2013
a(n) = Sum_{j=0..n} (j-1)^j * binomial(n,j). - Alois P. Heinz, Dec 16 2021
Showing 1-3 of 3 results.