Steven Finch has authored 163 sequences. Here are the ten most recent ones:
A376870
Reduced numerators of Newton's iteration for 1/sqrt(3), starting with 1/3.
Original entry on oeis.org
1, 4, 130, 2739685, 21055737501685791580, 9337539302589041654242365815942422114384262970589593842110
Offset: 0
a(1) = 4 because b(1) = (3/2)*(1/3)*(1 - 1/9) = 4/9.
1/3, 4/9, 130/243, 2739685/4782969, ... = A376870(n)/(3*A134799(n)).
-
Module[{n = 0}, NestList[#*(3^(3^n++ + 1) - #^2)/2 &, 1, 6]] (* Paolo Xausa, Oct 17 2024 *)
-
from itertools import count, islice
def A376870_gen(): # generator of terms
p = 1
for k in count(0):
yield p
p = p*(3**(3**k+1)-p**2)>>1
A376870_list = list(islice(A376870_gen(),6)) # Chai Wah Wu, Oct 11 2024
A376867
Reduced numerators of Newton's iteration for 1/sqrt(2), starting with 1/2.
Original entry on oeis.org
1, 5, 355, 94852805, 1709678476417571835487555, 9994796326591347130392203807311551183419838794447313956622219314498503205
Offset: 0
a(1) = 5 because b(1) = (1/2)*(3/2 - 1/4) = 5/8.
1/2, 5/8, 355/512, 94852805/134217728, ... = a(n)/A023365(n+1).
-
b:= proc(n) b(n):= `if`(n=0, 1/2, b(n-1)*(3/2-b(n-1)^2)) end:
a:= n-> numer(b(n)):
seq(a(n), n=0..5); # Alois P. Heinz, Oct 07 2024
-
a[0]=1/2; a[n_]:=a[n-1](3/2-a[n-1]^2); Numerator[Array[a,6,0]] (* Stefano Spezia, Oct 15 2024 *)
-
from itertools import count, islice
def A376867_gen(): # generator of terms
p = 1
for k in count(0):
yield p
p *= ((3<<((3**k<<1)-1))-p**2)
A376867_list = list(islice(A376867_gen(),6)) # Chai Wah Wu, Oct 11 2024
A350276
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose fourth-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-3).
Original entry on oeis.org
1, 1, 4, 27, 255, 1, 3094, 1, 30, 45865, 46, 405, 340, 803424, 659, 3780, 10710, 4970, 16239720, 12867, 48405, 209440, 178920, 87864, 372076163, 284785, 1225665, 3005940, 5457060, 3558492, 1812384, 9529560676, 7126384, 32262300, 51205700, 135084600, 120593340, 81557280, 42609720
Offset: 0
Triangle begins:
1;
1;
4;
27;
255, 1;
3094, 1, 30;
45865, 46, 405, 340;
803424, 659, 3780, 10710, 4970;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[4],
add(b(n-i, sort([l[], i])[1..4])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$4])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 22 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[4]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 4]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, Table[Infinity, {4}]]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350275
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose fourth-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/4).
Original entry on oeis.org
1, 1, 4, 27, 255, 1, 3094, 31, 45865, 791, 803424, 20119, 16239720, 528991, 8505, 372076163, 14689441, 654885, 9529560676, 435580164, 34859160, 269819334245, 13846282341, 1646054025, 8369112382488, 471890017358, 73811825010, 1286223400
Offset: 0
Triangle begins:
1;
1;
4;
27;
255, 1;
3094, 31;
45865, 791;
803424, 20119;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-4..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 22 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-4 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350274
Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 109, 1, 10, 619, 16, 45, 40, 4108, 92, 210, 420, 210, 31240, 771, 1645, 2800, 2520, 1344, 268028, 6883, 17325, 15960, 26460, 18144, 10080, 2562156, 68914, 173250, 148400, 226800, 211680, 151200, 86400, 27011016, 757934, 1854930, 1798720, 1801800, 2494800, 1940400, 1425600, 831600
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6;
[4] 23, 1;
[5] 109, 1, 10;
[6] 619, 16, 45, 40;
[7] 4108, 92, 210, 420, 210;
[8] 31240, 771, 1645, 2800, 2520, 1344;
[9] 268028, 6883, 17325, 15960, 26460, 18144, 10080;
...
Column 0 is 1 for n=0, together with
A000142(n) -
A122105(n-1) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m,
0, l[4]), add(b(n-j, sort([l[], j])[1..4])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])):
seq(T(n), n=0..11); # Alois P. Heinz, Dec 22 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
A350273
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose fourth-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/4).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 109, 11, 619, 101, 4108, 932, 31240, 8975, 105, 268028, 91387, 3465, 2562156, 991674, 74970, 27011016, 11514394, 1391390, 311378616, 143188574, 24188010, 246400, 3897004032, 1905067958, 412136010, 12812800, 52626496896, 27059601596, 7053834788, 438357920
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6;
[4] 23, 1;
[5] 109, 11;
[6] 619, 101;
[7] 4108, 932;
[8] 31240, 8975, 105;
[9] 268028, 91387, 3465;
...
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..5])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 22 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 5]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
A350081
Triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-2).
Original entry on oeis.org
1, 1, 4, 26, 1, 237, 1, 18, 2789, 31, 135, 170, 40270, 386, 810, 3060, 2130, 689450, 6574, 13545, 36295, 44730, 32949, 13657756, 129291, 327285, 323680, 944300, 790776, 604128, 307348641, 2910709, 7207137, 6602120, 15476580, 18780930, 16311456, 12782916
Offset: 0
Triangle begins:
1;
1;
4;
26, 1;
237, 1, 18;
2789, 31, 135, 170;
40270, 386, 810, 3060, 2130;
689450, 6574, 13545, 36295, 44730, 32949;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[3],
add(b(n-i, sort([l[], i])[1..3])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$3])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[3]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 3]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity, Infinity}]}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350080
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/3).
Original entry on oeis.org
1, 1, 4, 26, 1, 237, 19, 2789, 336, 40270, 5981, 405, 689450, 115193, 18900, 13657756, 2459955, 659505, 307348641, 58366045, 20330163, 1375640, 7745565616, 1530739594, 623758590, 99936200, 216114310994, 44076571672, 19795671225, 5325116720
Offset: 0
Triangle begins:
1;
1;
4;
26, 1;
237, 19;
2789, 336;
40270, 5981, 405;
689450, 115193, 18900;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-3..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-3 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350079
Triangle read by rows: T(n,k) is the number of endofunctions on [n] whose second-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 3, 1, 17, 1, 9, 142, 19, 27, 68, 1569, 201, 135, 510, 710, 21576, 2921, 3465, 2890, 6390, 9414, 355081, 50233, 63630, 20230, 84490, 98847, 151032, 6805296, 1004599, 1196181, 918680, 705740, 1493688, 1812384, 2840648, 148869153, 22872097, 26904339, 23943752, 6351660, 28072548, 30810528, 38348748, 61247664
Offset: 0
Triangle begins:
1;
1;
3, 1;
17, 1, 9;
142, 19, 27, 68;
1569, 201, 135, 510, 710;
21576, 2921, 3465, 2890, 6390, 9414;
355081, 50233, 63630, 20230, 84490, 98847, 151032;
...
Column 0 gives gives 1 together with
A001865.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[2],
add(b(n-i, sort([l[], i])[1..2])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[2]], Sum[b[n - i, Sort[Append[l, i]][[1;;2]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350078
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose second-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/2).
Original entry on oeis.org
1, 1, 3, 1, 17, 10, 142, 87, 27, 1569, 911, 645, 21576, 11930, 10260, 2890, 355081, 189610, 174132, 104720, 6805296, 3543617, 3229275, 2493288, 705740, 148869153, 76060087, 67843521, 60223520, 34424208, 3660215680, 1842497914, 1605373560, 1530575960, 1051155000, 310181886
Offset: 0
Triangle begins:
1;
1;
3, 1;
17, 10;
142, 87, 27;
1569, 911, 645;
21576, 11930, 10260, 2890;
355081, 189610, 174132, 104720;
...
Column 0 gives gives 1 together with
A001865.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-2..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := g[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-2 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Comments