cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A376867 Reduced numerators of Newton's iteration for 1/sqrt(2), starting with 1/2.

Original entry on oeis.org

1, 5, 355, 94852805, 1709678476417571835487555, 9994796326591347130392203807311551183419838794447313956622219314498503205
Offset: 0

Views

Author

Steven Finch, Oct 07 2024

Keywords

Comments

An explicit formula for a(n) is not known, although it arises from a recurrence and the corresponding denominators are simply 2^(3^n) = A023365(n+1).
Next term is too large to include.

Examples

			a(1) = 5 because b(1) = (1/2)*(3/2 - 1/4) = 5/8.
1/2, 5/8, 355/512, 94852805/134217728, ... = a(n)/A023365(n+1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1/2, b(n-1)*(3/2-b(n-1)^2)) end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..5);  # Alois P. Heinz, Oct 07 2024
  • Mathematica
    a[0]=1/2; a[n_]:=a[n-1](3/2-a[n-1]^2); Numerator[Array[a,6,0]] (* Stefano Spezia, Oct 15 2024 *)
  • Python
    from itertools import count, islice
    def A376867_gen(): # generator of terms
        p = 1
        for k in count(0):
            yield p
            p *= ((3<<((3**k<<1)-1))-p**2)
    A376867_list = list(islice(A376867_gen(),6)) # Chai Wah Wu, Oct 11 2024

Formula

a(n) is the reduced numerator of b(n) = b(n-1)*(3/2 - b(n-1)^2); b(0) = 1/2.
Limit_{n -> oo} a(n)/A023365(n+1) = 1/sqrt(2) = A010503.
a(n+1) = a(n)*(3*2^(2*3^n-1)-a(n)^2). - Chai Wah Wu, Oct 11 2024

A134799 a(n) = 3^((3^n - 1)/2).

Original entry on oeis.org

1, 3, 81, 1594323, 12157665459056928801, 5391030899743293631239539488528815119194426882613553319203
Offset: 0

Views

Author

Yasutoshi Kohmoto, Jan 09 2008

Keywords

Comments

Number of partitions into "bus routes" of the graph G_{n+1} defined below.
These seem to be one-third the reduced denominators of Newton's iteration for 1/sqrt(3), starting with 1/3. - Steven Finch, Oct 08 2024

Examples

			.........|..................G_1
****
.......__|__................G_2
.........|
****
.__|_____|_____|__..........G_3
...|.....|.....|
.........|
.......__|__
.........|
****.
..._|_........._|_..........G_4
_|__|_____|_____|__|_
.|._|_....|...._|_.|
....|.....|.....|
......_|__|__|_
.......|._|_.|
..........|
****
G_1 = o---. = rooted tree with one edge and one leaf node. For n > 0, G_{n+1} is obtained from G_n by splitting each leaf node into three.
		

Crossrefs

Programs

  • Mathematica
    3^((3^Range[0, 6] - 1)/2) (* Paolo Xausa, Oct 17 2024 *)

Formula

a(n) is conjectured to be one-third the reduced denominator of b(n) = (3/2)*b(n-1)*(1 - b(n-1)^2); b(0) = 1/3. - Steven Finch, Oct 08 2024
Limit_{n -> oo} A376870(n)/(3*a(n)) = 1/sqrt(3) = A020760. - Steven Finch, Oct 08 2024

Extensions

Edited by N. J. A. Sloane, Jan 29 2008
a(5) from Andrew Howroyd, Oct 07 2024
Showing 1-2 of 2 results.