cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Yasutoshi Kohmoto

Yasutoshi Kohmoto's wiki page.

Yasutoshi Kohmoto has authored 250 sequences. Here are the ten most recent ones:

A357895 Number of partitions of the complete graph on n vertices into strokes.

Original entry on oeis.org

1, 2, 12, 472, 104800
Offset: 1

Author

Yasutoshi Kohmoto and Max Alekseyev, Oct 18 2022

Keywords

Comments

Partition of graph G=(V,E) into strokes is a collection of directed edge-disjoint trails (viewed as sets of directed edges, cf. A357857) in G such that (i) no two trails can be concatenated into a single one; (ii) the corresponding undirected edges form a partition of E.

A354228 Number of partitions of the multigraph G_n (defined below) into "strokes".

Original entry on oeis.org

1, 6, 58, 578, 5766, 57810, 580310, 5829538, 58575686, 588641522, 5915670070, 59451845314, 597489270438, 6004768803090, 60348023150742, 606498938168290, 6095328830488582, 61258206225329970, 615646518692614390, 6187263150038580994
Offset: 1

Author

Yasutoshi Kohmoto and Max Alekseyev, Jul 18 2022

Keywords

Comments

Here G_n = {V_n, E_n}, V_n = {v_1, v_2, ..., v_n}, E_n = {e_1, e_2, ..., e_{n-1}, f_1, f_2, ..., f_{n-1}}. For all i, e_i = f_i = v_iv_{i+1} although e_i and f_i are considered distinct.
Given an undirected multigraph G = (V,E) with labeled edges, its partition into strokes is a collection of directed edge-disjoint paths (viewed as sets of directed edges) on V such that (i) union of any two paths is not a path; (ii) union of corresponding undirected paths is E.

Crossrefs

Previously A131519 was thought to be this sequence.

Programs

  • Mathematica
    CoefficientList[Series[x (1-2x)^2(1-3x-14x^2)/(1-13x+22x^2+88x^3-112x^4),{x,0,20}],x] (* or *) LinearRecurrence[{13,-22,-88,112},{0,1,6,58,578,5766},30] (* Harvey P. Dale, Oct 31 2024 *)

Formula

For n >= 6, a(n) = 13*a(n-1) - 22*a(n-2) - 88*a(n-3) + 112*a(n-4).
O.g.f.: x * (1-2*x)^2 * (1 - 3*x - 14*x^2) / (1 - 13*x + 22*x^2 + 88*x^3 - 112*x^4).

A355273 Primes p for which p + q is a multiple of 4, where q is the previous prime if p == 2 (mod 3) or the next prime otherwise.

Original entry on oeis.org

3, 5, 29, 31, 53, 59, 61, 73, 89, 137, 139, 149, 151, 157, 173, 179, 181, 191, 239, 241, 251, 257, 263, 269, 271, 283, 293, 331, 337, 347, 359, 367, 373, 389, 409, 419, 421, 431, 433, 449, 509, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 631
Offset: 1

Author

M. F. Hasler and Yasutoshi Kohmoto, Jun 26 2022

Keywords

Comments

Naively one might expect p + precprime / nextprime congruent to 0 or to 2 (mod 4) with equal probability. It turns out that, following the given rule, the case 2 is much more frequent than the case 0, especially for small primes. (Observation by Y. Kohmoto.)
See the comment from 2017 in A068228 for an explanation.

Crossrefs

Cf. A151799 (previous prime), A151800 (next prime).
Cf. A068228.

Programs

  • PARI
    select( is(p)=if(p%3==2, precprime(p-1)+p, nextprime(p+1)+p)%4==0, primes(149))
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen():
        p, q = 2, [3, 1]
        while True:
            if (p + q[int(p%3 == 2)])%4 == 0: yield p
            p, q = q[0], [nextprime(q[0]), p]
    print(list(islice(agen(), 54))) # Michael S. Branicky, Jun 26 2022

A355272 Primes p for which p + q is not a multiple of 4, where q is the previous prime if p == 1 (mod 3) or else the next prime.

Original entry on oeis.org

2, 89, 97, 211, 223, 359, 367, 389, 397, 401, 409, 449, 457, 467, 479, 487, 491, 499, 509, 631, 673, 683, 691, 701, 709, 719, 727, 743, 751, 761, 769, 797, 887, 907, 911, 919, 929, 937, 983, 991, 1009, 1109, 1117, 1163, 1171, 1193, 1201, 1213, 1249, 1307, 1373
Offset: 1

Author

M. F. Hasler and Yasutoshi Kohmoto, Jun 26 2022

Keywords

Comments

Naively one might expect p + precprime / nextprime congruent to 0 or to 2 (mod 4) with equal probability. It turns out that, following the given rule, the case 0 is much more frequent than the case 2, especially for small primes. (Observation by Y. Kohmoto.)
See the comment from 2017 in A068228 for an explanation.

Crossrefs

Cf. A151799 (previous prime), A151800 (next prime).
Cf. A068228.

Programs

  • PARI
    select( is(p)=if(p%3==1, precprime(p-1)+p, nextprime(p+1)+p)%4, primes(199))
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen():
        p, q = 2, [3, 1]
        while True:
            if (p + q[int(p%3 == 1)])%4 != 0: yield p
            p, q = q[0], [nextprime(q[0]), p]
    print(list(islice(agen(), 51))) # Michael S. Branicky, Jun 26 2022

A281791 Ways to tile a 5 X (2n+1) floor with tatami mats, including one monomer.

Original entry on oeis.org

3, 18, 10, 8, 18, 24, 32, 52, 68, 100, 142, 196, 280, 388, 542, 756, 1046, 1452, 2006, 2768, 3816, 5248, 7212, 9896, 13562, 18568, 25392, 34692, 47354, 64580, 88002, 119824, 163034, 221672, 301200, 409004, 555060, 752844, 1020550, 1382732, 1872520, 2534596, 3429206, 4637556, 6269070
Offset: 0

Author

Yasutoshi Kohmoto, Jan 30 2017

Keywords

Comments

Apart from a single 1 X 1 monomer, the area is tiled with 2 X 1 mats. No four mats are permitted to meet at a point.

Examples

			For n=0, the 5X1 floor allows the monomer to be placed at one of the two ends or in the middle: a(n=0)=3.
		

Crossrefs

Cf. A271786 [3X(2n+1) floor]. 2nd column of A272474.

Programs

  • PARI
    s1(n)=my(s); forstep(k=(n%4!=1),(n-1)\6,2, s+=((n+3)/4-k/2)*((n-1)/4-k/2)!/(k!*((n-1)/4-3*k/2)!)); 2*s
    s3(n)=my(s); forstep(k=(n%4==1),(n-3)\6,2, s+=((n-3)/4-k/2)!/(k!*((n-3)/4-3*k/2)!)); 2*s
    s5(n)=my(s); forstep(k=(n%4!=1),(n-5)\6,2, s+=((n+7)/4-k/2)*((n-5)/4-k/2)!/(k!*((n-5)/4-3*k/2)!)); 2*s
    a(n)=s1(n) + s3(n) + s5(n) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = S_1(2n+1) + S_5(2n+1) + S_3(2n+1) for n>1 where
S_1(n) = 2* Sum_{k= 0<=k<=[(n-1)/6]} ((n+3)/4-1/2*k) *((n-1)/4-1/2*k)!/(k!*((n-1)/4-3/2*k)!). The sum is over even k if n==1 (mod 4), else over odd k.
S_5(n) = 2* Sum_{0<=k<=[(n-5)/6]} ((n+7)/4-1/2*k) *((n-5)/4-1/2*k)!/(k!*((n-5)/4-3/2*k)!). The sum is over even k if n==1 (mod 4) else over odd k.
S_3(n) = 2* Sum_{0<=k<=[(n-3)/6]} 2*((n-3)/4-1/2*k)!/(k!*((n-3)/4-3/2*k)!). The sum is over odd k if n==1 (mod 4), else over even k.
Where [m] is floor(m).
G.f. x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. (Includes zeros for even floor widths).- R. J. Mathar, Apr 10 2017
a(n) = 2*(A228577(n-1)+A228577(n+1))+4*(A182097(n-2)+A182097(n-1)), n>1. - R. J. Mathar, Apr 10 2017

A145680 a(n) = smallest number m such that UnitarySigma(m) = nm/(n-1).

Original entry on oeis.org

6, 2, 3, 4, 5, 216, 7, 8, 9, 5292000, 11, 10584000, 13, 4991499040640000, 165375, 16, 17, 235270656, 19, 101867327360000, 8107610881081625211441398582431641600000, 19235716742537891017605454376709022095843377283072000000, 23, 552063590295800832, 25
Offset: 2

Author

Yasutoshi Kohmoto Mar 09 2009

Keywords

Comments

If n=p^i+1 then a(n)=p^i.
Unitary sigma = A034448 = sum of divisors d with gcd(d,m/d)=1.
Note that a(27) > 10^70. - Jack Brennen, Feb 04 2014

Examples

			UnitarySigma(216) = 2^2*3^2*7 = (7/6)*216.
		

Crossrefs

Cf. A034448.
Related sequences include A145681 (and A144672, A144673, A144674) for 3/2-URPMS, and A144949-A144951 for 5/4-URPMS. - M. F. Hasler, Jan 29 2014

Extensions

Corrected a(13) and added a(22) found by Jack Brennen. M. F. Hasler, Feb 04 2014
a(23)-a(26) from Jack Brennen, Feb 04 2014

A146892 For definition see comments lines.

Original entry on oeis.org

1, 6, 6, 72, 72, 72, 6, 72, 72, 5184, 6, 5184, 72, 5184, 31104, 5184, 5184, 5184, 2592, 5184, 432, 373248, 36, 373248, 31104, 26873856, 26873856, 26873856, 373248, 31104, 36, 31104, 2239488, 2239488, 1934917632, 26873856, 31104, 2239488
Offset: 0

Author

Yasutoshi Kohmoto, Apr 17 2009

Keywords

Comments

Let USigma denote the unitary sigma function, A034448.
As in A146891, let PF_p(n) denote the largest power of the prime p dividing n. PF_2 is A006519, and PF_3 is A038500. Furthermore define PF_1(n)=1.
Extension to multi-prime-indices is done by multiplying the corresponding functions: PF_{p,q,..}(n) = PF_p(n)*PF_q(n)*... An example of this is PF_{2,3} = A065331.
[How to compute c(m)]
Case of Base Primes = {2}{3}
c(0)=2^m, b(0)=2^m
c(n)=c(n-1)/PF_2[USigma[b(n-1)]]*PF_3[USigma[b(n-1)]]
b(n)=USigma[b(n-1)]/ PF_2,3[USigma[b(n-1)]]
IF b(k)=1 THEN END
a(m)=c(k)
Sequence gives a(m)
Factorization of term becomes 2^r*3^s.

Crossrefs

Cf. A146891.

Programs

Extensions

More terms from R. J. Mathar, Jun 24 2009

A152199 Trajectory of 7 under the map m -> A082010(m).

Original entry on oeis.org

7, 12, 6, 3, 5, 9, 15, 25, 41, 66, 33, 53, 85, 137, 220, 110, 55, 89, 143, 229, 367, 588, 294, 147, 236, 118, 59, 95, 153, 245, 393, 629, 1007, 1612, 806, 403, 645, 1033, 1653, 2645, 4233, 6773, 10837, 17340, 8670, 4335, 6937, 11100, 5550, 2775, 4441, 7106
Offset: 1

Author

N. J. A. Sloane, Oct 06 2009, suggested by a posting to the Sequence Fans Mailing List by Yasutoshi Kohmoto, Sep 30 2009

Keywords

Comments

First differences: 5, -6, -3, 2, 4, 6, 10, 16, 25, -33, 20, 32, 52, 83, -110, -55, 34, 54, 86, 138, 221, -294, -147, 89, -118, -59, 36, 58, 92, 148, 236, 378, 605, -806, -403, 242, 388, 620, 992, 1588, 2540, 4064, 6503, -8670, -4335, 2602, 4163, -5550, -2775, 1666, 2665, -3553, 2132, 3412, 5459, -7278, -3639, 2184, 3494, 5591, -7454, -3727, 2237, -2982, -1491, 895, -1193, 716, 1146, 1834, 2934, 4694, 7511, -10014, -5007, 3005, -4006, -2003, 1202, 1924, 3078, 4925, -6566, -3283, 1970, 3152, 5044, 8070, 12912, 20659, -27545, 16528, 26444, 42311, -56414, -28207, 16925, -22566, -11283, 6770. [Zak Seidov, Oct 07 2009]

Programs

  • Maple
    A082010 := proc(n) if type(n,'even') then n/2; else 1+floor(8*n/5) ; fi; end: A152199 := proc(n) option remember; if n = 1 then 7; else A082010(procname(n-1)) ; fi; end: seq(A152199(n),n=1..100) ; # R. J. Mathar, Oct 07 2009
  • Mathematica
    NestList[If[EvenQ[ # ], #/2, Floor[8*#/5] + 1] &, 7, 100] (* Zak Seidov, Oct 07 2009 *)

Extensions

More terms from R. J. Mathar and Zak Seidov, Oct 07 2009

A146891 Terminal point of a repeated reduction of usigma starting at 2^n.

Original entry on oeis.org

1, 6, 20, 72, 72, 72, 20, 72, 72, 17280, 4800, 17280, 72, 17280, 1152000, 5184, 5184, 5184, 96000, 5184, 345600, 1244160, 320000, 1244160, 82944000, 89579520, 71663616000, 298598400, 1244160, 82944000, 23040000, 82944000, 19906560000
Offset: 0

Author

Yasutoshi Kohmoto, Apr 17 2009

Keywords

Comments

Let PF_p(n) be the highest power of p dividing n. Examples are PF_2(n) = A006519(n), PF_3(n) = A038500(n) and PF_5(n) = 5^A112765(n) for the cases p = 2, 3, and 5.
Multi-indexed PF_(p1,p2,...)(n) are defined as the products PF_(p1)(n)*PF_(p2)(n)*...
For each n, we define an auxiliary sequence b(k) starting at b(0) = 2^n by b(k+1) = A034448(b(k))/PF_(2,3,5)(A034448(b(k)), that is, repeated removal of all powers of 2, 3 and 5 from the unitary sigma value. b(k) terminates at some k with b(k)=1. In addition there is an auxiliary parallel sequence c(k) defined by c(0)=2^n and recursively c(k+1) = c(k)*PF_(3,5)(A034448(b(k)))/A006519(A034448(b(k))), reducing 2^n by the powers of 2 which are divided out of the sequence b.
The sequence is defined by a(n) = c(k), the auxiliary sequence c at the point where b terminates.
All values of the sequence a(n) are 5-smooth, i.e., members of A051037.

Examples

			n=5
b(n) : 2^5 -> 11 -> 1
c(n) : 2^5 -> 2^5*3 -> 2^3*3^2
So a(5) = c(2) = 2^3*3^2 = 72.
		

Crossrefs

Programs

  • Maple
    PF := proc(n,p) local nshf,a ; a := 1; nshf := n ; while (nshf mod p ) = 0 do nshf := nshf/p ; a := a*p ; od: a ; end:
    A146891 := proc(n) local b,a,k,t ;
        b := [2^n] ;
        while op(-1,b) <> 1 do
            t := A034448(op(-1,b)) ;
            b := [op(b), t/A006519(t)/ A038500(t)/PF(t,5) ] ;
        od:
        a := 2^n ;
        for k from 2 to nops(b) do
            t := A034448(op(k-1,b)) ;
            a := a/ A006519(t) *A038500(t)*PF(t,5) ;
         od:
         a ;
    end:
    # R. J. Mathar, Jun 24 2009
  • Mathematica
    PF[n_, p_] := p^IntegerExponent[n, p];
    usigma[n_] := If[n == 1, 1, Times @@ (1+Power @@@ FactorInteger[n])];
    A146891[n_] := Module[{b, a, k, t},
       b = {2^n};
       While[b[[-1]] != 1,
          t = usigma[b[[-1]]];
          b = Append[b, t/PF[t, 2]/PF[t, 3]/PF[t, 5]]];
       a = 2^n;
       For[k = 2, k <= Length[b], k++,
          t = usigma[b[[k-1]]];
          a = a/PF[t, 2]*PF[t, 3]*PF[t, 5]];
       a];
    Table[A146891[n], {n, 0, 32}] (* Jean-François Alcover, Apr 09 2024, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Jun 24 2009
Edited by R. J. Mathar, Jul 02 2009
Description of relation between a(n) and c(k) corrected by R. J. Mathar, Jul 07 2009

A145681 Numbers m such that A034448(m) = 3m/2, where A034448 = unitary sigma = sum of divisors d with gcd(d,m/d)=1.

Original entry on oeis.org

2, 20, 24, 360, 816, 1056, 12240, 15840, 29120, 181632, 2724480, 9192960, 13790400, 15288000, 93358848, 199180800, 1130734080, 1400382720, 25115166720, 544161945600, 3089165506560, 11519246340096, 172788695101440, 274358081249280, 5944425093734400, 33746043993661440, 7425442423511040000, 25976914334122752000000, 48787315395486187520000, 56897897650906642513920
Offset: 1

Author

Yasutoshi Kohmoto Mar 09 2009

Keywords

Comments

See also A144672, A144673 and A144674. These three and the present one all differ only by one or two terms around a(11)-a(12). More explanations would be welcome. - M. F. Hasler, Jan 29 2014

Crossrefs

Cf. A034448.

Extensions

Corrected and extended by Jack Brennen, Jan 30 2014