A357895 Number of partitions of the complete graph on n vertices into strokes.
1, 2, 12, 472, 104800
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Yasutoshi Kohmoto's wiki page.
Yasutoshi Kohmoto has authored 250 sequences. Here are the ten most recent ones:
CoefficientList[Series[x (1-2x)^2(1-3x-14x^2)/(1-13x+22x^2+88x^3-112x^4),{x,0,20}],x] (* or *) LinearRecurrence[{13,-22,-88,112},{0,1,6,58,578,5766},30] (* Harvey P. Dale, Oct 31 2024 *)
select( is(p)=if(p%3==2, precprime(p-1)+p, nextprime(p+1)+p)%4==0, primes(149))
from sympy import nextprime from itertools import islice def agen(): p, q = 2, [3, 1] while True: if (p + q[int(p%3 == 2)])%4 == 0: yield p p, q = q[0], [nextprime(q[0]), p] print(list(islice(agen(), 54))) # Michael S. Branicky, Jun 26 2022
select( is(p)=if(p%3==1, precprime(p-1)+p, nextprime(p+1)+p)%4, primes(199))
from sympy import nextprime from itertools import islice def agen(): p, q = 2, [3, 1] while True: if (p + q[int(p%3 == 1)])%4 != 0: yield p p, q = q[0], [nextprime(q[0]), p] print(list(islice(agen(), 51))) # Michael S. Branicky, Jun 26 2022
For n=0, the 5X1 floor allows the monomer to be placed at one of the two ends or in the middle: a(n=0)=3.
s1(n)=my(s); forstep(k=(n%4!=1),(n-1)\6,2, s+=((n+3)/4-k/2)*((n-1)/4-k/2)!/(k!*((n-1)/4-3*k/2)!)); 2*s s3(n)=my(s); forstep(k=(n%4==1),(n-3)\6,2, s+=((n-3)/4-k/2)!/(k!*((n-3)/4-3*k/2)!)); 2*s s5(n)=my(s); forstep(k=(n%4!=1),(n-5)\6,2, s+=((n+7)/4-k/2)*((n-5)/4-k/2)!/(k!*((n-5)/4-3*k/2)!)); 2*s a(n)=s1(n) + s3(n) + s5(n) \\ Charles R Greathouse IV, Feb 20 2017
UnitarySigma(216) = 2^2*3^2*7 = (7/6)*216.
A082010 := proc(n) if type(n,'even') then n/2; else 1+floor(8*n/5) ; fi; end: A152199 := proc(n) option remember; if n = 1 then 7; else A082010(procname(n-1)) ; fi; end: seq(A152199(n),n=1..100) ; # R. J. Mathar, Oct 07 2009
NestList[If[EvenQ[ # ], #/2, Floor[8*#/5] + 1] &, 7, 100] (* Zak Seidov, Oct 07 2009 *)
n=5 b(n) : 2^5 -> 11 -> 1 c(n) : 2^5 -> 2^5*3 -> 2^3*3^2 So a(5) = c(2) = 2^3*3^2 = 72.
PF := proc(n,p) local nshf,a ; a := 1; nshf := n ; while (nshf mod p ) = 0 do nshf := nshf/p ; a := a*p ; od: a ; end: A146891 := proc(n) local b,a,k,t ; b := [2^n] ; while op(-1,b) <> 1 do t := A034448(op(-1,b)) ; b := [op(b), t/A006519(t)/ A038500(t)/PF(t,5) ] ; od: a := 2^n ; for k from 2 to nops(b) do t := A034448(op(k-1,b)) ; a := a/ A006519(t) *A038500(t)*PF(t,5) ; od: a ; end: # R. J. Mathar, Jun 24 2009
PF[n_, p_] := p^IntegerExponent[n, p]; usigma[n_] := If[n == 1, 1, Times @@ (1+Power @@@ FactorInteger[n])]; A146891[n_] := Module[{b, a, k, t}, b = {2^n}; While[b[[-1]] != 1, t = usigma[b[[-1]]]; b = Append[b, t/PF[t, 2]/PF[t, 3]/PF[t, 5]]]; a = 2^n; For[k = 2, k <= Length[b], k++, t = usigma[b[[k-1]]]; a = a/PF[t, 2]*PF[t, 3]*PF[t, 5]]; a]; Table[A146891[n], {n, 0, 32}] (* Jean-François Alcover, Apr 09 2024, after R. J. Mathar *)
Comments