cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A272474 Triangle T(n,m) by rows: the number of tatami tilings of the 5 X n floor with dimers and m monomers.

Original entry on oeis.org

0, 3, 0, 4, 0, 1, 6, 0, 35, 0, 26, 0, 1, 0, 18, 0, 56, 0, 16, 3, 0, 52, 0, 64, 0, 7, 0, 10, 0, 88, 0, 80, 2, 0, 60, 0, 182, 0, 81, 0, 8, 0, 160, 0, 320, 0, 96, 2, 0, 102, 0, 500, 0, 449, 0, 112, 0, 18, 0, 340, 0, 952, 0, 600, 0, 120, 4, 0, 184, 0, 1056
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 and column m=0 as:
0,3,0,4,0,1;
6,0,35,0,26,0,1;
0,18,0,56,0,16;
3,0,52,0,64,0,7;
0,10,0,88,0,80;
2,0,60,0,182,0,81;
0,8,0,160,0,320,0,96;
2,0,102,0,500,0,449,0,112;
0,18,0,340,0,952,0,600,0,120;
4,0,184,0,1056,0,1535,0,712,0,128;
0,24,0,550,0,2216,0,2338,0,824,0,128;
4,0,246,0,2050,0,4367,0,3256,0,936,0,128;
0,32,0,936,0,5044,0,7728,0,4454,0,1040,0,128;
6,0,414,0,4054,0,11539,0,12360,0,5816,0,1160,0,128;
0,52,0,1658,0,10736,0,22410,0,18744,0,7352,0,1280,0,128;
8,0,620,0,7412,0,27039,0,39590,0,26576,0,9056,0,1408,0,128;
0,68,0,2596,0,21180,0,57296,0,65634,0,36312,0,10864,0,1536,0,128;
10,0,908,0,13022,0,59625,0,112526,0,102054,0,47954,0,12816,0,1664,0,128;
0,100,0,4312,0,41056,0,138444,0,204496,0,152648,0,61720,0,14872,0,1792,0,128;
14,0,1404,0,23112,0,126291,0,298136,0,347122,0,219228,0,77904,0,17056,0,1920,0,128;
0,142,0,6904,0,77136,0,314464,0,584236,0,560856,0,305264,0,96552,0,19360,0,2048,0,128;
18,0,2034,0,38898,0,254427,0,731536,0,1068766,0,863460,0,413418,0,117944,0,21792,0,2176,0,128;
0,196,0,10778,0,139276,0,678728,0,1537620,0,1850598,0,1282412,0,546464,0,142128,0,24352,0,2304,0,128;
24,0,3018,0,65388,0,496213,0,1704232,0,3026128,0,3048168,0,1843736,0,707754,0,169288,0,27040,0,2432,0,128;
		

Crossrefs

Cf. A192091 (row sums), A068924 (column m=0), A281791 (column m=1), A272473 (4 by n grid).

Formula

G.f. x*( -3*x^11*y^8 +7*x^4*y^7 +x^2*y^7 -24*x^6*y^7 -2*x^5*y^4 -y^5 -2*x^3*y^2 -16*x^9 -9*x^ 2*y +3*x^3 +13*x^5 +7*x^15 -6*x -3*y -22*x*y^4 -32*x*y^2 +16*x^11*y^6 -6*x^13*y^2 -14*x^ 15*y^4 +3*x^13 +14*x^5*y^6 -11*x^11 +6*x^7 -55*y^3*x^10 -17*x^2*y^3 +37*x^6*y -24*y^3*x^14 -48*x^10*y +2*x^17*y^2 -19*x^12*y -4*y^3 -55*x^12*y^3 -8*x^11*y^4 +51*x^8*y^5 +28*x^7*y^6 +72*x^6*y^3 +31*y^2*x^15 -58*x^13*y^4 +x^17 -64*x^11*y^2 +36*x^10*y^5 +55*x^8*y^3 -50*x^6*y^5 -4*x^4*y^3 -5*x^9*y^4 -5*x^8*y +60*y^2*x^5 +84*x^7*y^2 -12*x^9*y^6 +55*x^7*y^4 -2*x^12*y^5 -79*x^9*y^2 -2*x^16*y^3 +4*x^7*y^8 +11*x^4*y -20*x^4*y^5 +6*x^13*y^ 6 +15*x^16*y +17*x^14*y^5 -5*x^10*y^7 -26*x^8*y^7 +x^8*y^9 +21*y*x^14 +11*x^2*y^5 +x^7* y^10 -x^10*y^9 +14*x^3*y^4 +9*x^3*y^6 -5*y^7*x^12 +3*x^9*y^8) / (x^14 +x^13*y +x^12 -2*x^ 12*y^2 -x^11*y^3 -2*x^10*y^2 -x^10 -x^9*y^3 +x^8*y^4 -3*x^8 -3*x^8*y^2 -x^7*y -x^7*y^3 +x^6*y^4 +4*x^6*y^2 -y^3*x^5 +2*x^4 +y^2*x^4 -x^3*y +x^2 +x*y -1). - R. J. Mathar, May 02 2016
G.f. for column m=1: x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. - R. J. Mathar, May 02 2016, corrected Apr 10 2017
G.f. for column m=2: -8 +17*x^2 +2*x^4 -2*(9*x^16 +24*x^14 +17*x^12 -22*x^10 -39*x^8 -9*x^6 +13*x^4 +9*x^2 +4) / (x^6+x^4-1)^3. - R. J. Mathar, May 02 2016
Showing 1-1 of 1 results.