cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068924 Number of ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

6, 3, 2, 2, 4, 4, 6, 8, 10, 14, 18, 24, 32, 42, 56, 74, 98, 130, 172, 228, 302, 400, 530, 702, 930, 1232, 1632, 2162, 2864, 3794, 5026, 6658, 8820, 11684, 15478, 20504, 27162, 35982, 47666, 63144, 83648, 110810, 146792, 194458, 257602, 341250
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068930 for incongruent tilings, A068920 for more info. First column of A272474.

Formula

For n >= 6, a(n) = a(n-2) + a(n-3).
G.f.: x*(-6+x^4+7*x^3+4*x^2-3*x)/(-1+x^3+x^2). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 2*A000931(n+3) for n>=3. - R. J. Mathar, Dec 06 2013

A192091 Number of tatami tilings of a 5 X n grid (with monomers allowed).

Original entry on oeis.org

1, 8, 68, 90, 126, 178, 325, 584, 1165, 2030, 3619, 6080, 10987, 19362, 35477, 62360, 111837, 195614, 350707, 619568, 1112315, 1967090, 3514597, 6214984, 11093549, 19664558, 35090115, 62247552, 110934699, 196859394, 350650261
Offset: 0

Views

Author

Frank Ruskey and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jul 07 2011

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Here are some tatami tilings of the 5 X 3 grid:
    _ _ _ _ _   _ _ _ _ _   _ _ _ _ _   _ _ _ _ _
   |_ _| |_| | |_| |_|_ _| | |_ _| |_| |_| | |_ _|
   |_ _|_| |_| | |_|_ _| | |_| |_|_| | | |_|_| | |
   |_|_ _|_|_| |_|_ _|_|_| |_|_|_ _|_| |_|_ _|_|_|
		

Crossrefs

Cf. A192090, A192092, A033508 (without tatami condition). Row sums of A272474.

A281791 Ways to tile a 5 X (2n+1) floor with tatami mats, including one monomer.

Original entry on oeis.org

3, 18, 10, 8, 18, 24, 32, 52, 68, 100, 142, 196, 280, 388, 542, 756, 1046, 1452, 2006, 2768, 3816, 5248, 7212, 9896, 13562, 18568, 25392, 34692, 47354, 64580, 88002, 119824, 163034, 221672, 301200, 409004, 555060, 752844, 1020550, 1382732, 1872520, 2534596, 3429206, 4637556, 6269070
Offset: 0

Views

Author

Yasutoshi Kohmoto, Jan 30 2017

Keywords

Comments

Apart from a single 1 X 1 monomer, the area is tiled with 2 X 1 mats. No four mats are permitted to meet at a point.

Examples

			For n=0, the 5X1 floor allows the monomer to be placed at one of the two ends or in the middle: a(n=0)=3.
		

Crossrefs

Cf. A271786 [3X(2n+1) floor]. 2nd column of A272474.

Programs

  • PARI
    s1(n)=my(s); forstep(k=(n%4!=1),(n-1)\6,2, s+=((n+3)/4-k/2)*((n-1)/4-k/2)!/(k!*((n-1)/4-3*k/2)!)); 2*s
    s3(n)=my(s); forstep(k=(n%4==1),(n-3)\6,2, s+=((n-3)/4-k/2)!/(k!*((n-3)/4-3*k/2)!)); 2*s
    s5(n)=my(s); forstep(k=(n%4!=1),(n-5)\6,2, s+=((n+7)/4-k/2)*((n-5)/4-k/2)!/(k!*((n-5)/4-3*k/2)!)); 2*s
    a(n)=s1(n) + s3(n) + s5(n) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = S_1(2n+1) + S_5(2n+1) + S_3(2n+1) for n>1 where
S_1(n) = 2* Sum_{k= 0<=k<=[(n-1)/6]} ((n+3)/4-1/2*k) *((n-1)/4-1/2*k)!/(k!*((n-1)/4-3/2*k)!). The sum is over even k if n==1 (mod 4), else over odd k.
S_5(n) = 2* Sum_{0<=k<=[(n-5)/6]} ((n+7)/4-1/2*k) *((n-5)/4-1/2*k)!/(k!*((n-5)/4-3/2*k)!). The sum is over even k if n==1 (mod 4) else over odd k.
S_3(n) = 2* Sum_{0<=k<=[(n-3)/6]} 2*((n-3)/4-1/2*k)!/(k!*((n-3)/4-3/2*k)!). The sum is over odd k if n==1 (mod 4), else over even k.
Where [m] is floor(m).
G.f. x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. (Includes zeros for even floor widths).- R. J. Mathar, Apr 10 2017
a(n) = 2*(A228577(n-1)+A228577(n+1))+4*(A182097(n-2)+A182097(n-1)), n>1. - R. J. Mathar, Apr 10 2017
Showing 1-3 of 3 results.