cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068920 Table of t(r,s) read by antidiagonals: t(r,s) is the number of ways to tile an r X s room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 0, 4, 0, 1, 6, 4, 4, 6, 1, 0, 9, 0, 2, 0, 9, 0, 1, 13, 6, 3, 3, 6, 13, 1, 0, 19, 0, 3, 0, 3, 0, 19, 0, 1, 28, 10, 3, 2, 2, 3, 10, 28, 1, 0, 41, 0, 5, 0, 2, 0, 5, 0, 41, 0, 1, 60, 16, 5, 2, 2, 2, 2, 5, 16, 60, 1, 0, 88, 0, 6, 0, 1, 0, 1, 0, 6, 0, 88, 0, 1, 129, 26
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Comments

Rows 2-6 are given in A068921 - A068925.

Examples

			Table begins:
  0, 1, 0, 1, 0, 1, ...
  1, 2, 3, 4, 6, 9, ...
  0, 3, 0, 4, 0, 6, ...
  1, 4, 4, 2, 3, 3, ...
  0, 6, 0, 3, 0, 2, ...
  1, 9, 6, 3, 2, 2, ...
  ...
		

Crossrefs

Cf. A068926 for incongruent tilings, A067925 for count by area.
Cf. A068921 (row 2), A068922 (row 3), A068923 (row 4), A068924 (row 5), A068925 (row 6).

Programs

  • Mathematica
    (* See link for Mathematica programs. *)
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]];
    A068920[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; t[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];
    Table[A068920[n], {n, 0, 100}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

A068930 Number of incongruent ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

4, 2, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 26, 37, 45, 63, 78, 108, 136, 186, 237, 322, 414, 559, 724, 973, 1267, 1697, 2219, 2964, 3888, 5183, 6815, 9071, 11949, 15886, 20955, 27835, 36755, 48790, 64476, 85545, 113115, 150021, 198460, 263136
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068924 for total number of tilings, A068926 for more info.
Cf. A005683.

Programs

  • Mathematica
    Join[{4,2},LinearRecurrence[{0,1,1,1,0,0,-1,-1,-1},{1,1,1,2,2,3,3,5,5},50]] (* Harvey P. Dale, Nov 21 2014 *)

Formula

For n >= 12, a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-7) - a(n-8) - a(n-9).
G.f.: x*(4+x^10+5*x^9+4*x^8+3*x^7-x^6-2*x^5-6*x^4-5*x^3 -3*x^2+2*x) / ((x^3+x^2-1)*(x^6+x^4-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = sum(A102541(n-k-2, n-2*k-4), k=0..floor((n-4)/2)), n >= 4. - Johannes W. Meijer, Aug 24 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.

A272474 Triangle T(n,m) by rows: the number of tatami tilings of the 5 X n floor with dimers and m monomers.

Original entry on oeis.org

0, 3, 0, 4, 0, 1, 6, 0, 35, 0, 26, 0, 1, 0, 18, 0, 56, 0, 16, 3, 0, 52, 0, 64, 0, 7, 0, 10, 0, 88, 0, 80, 2, 0, 60, 0, 182, 0, 81, 0, 8, 0, 160, 0, 320, 0, 96, 2, 0, 102, 0, 500, 0, 449, 0, 112, 0, 18, 0, 340, 0, 952, 0, 600, 0, 120, 4, 0, 184, 0, 1056
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 and column m=0 as:
0,3,0,4,0,1;
6,0,35,0,26,0,1;
0,18,0,56,0,16;
3,0,52,0,64,0,7;
0,10,0,88,0,80;
2,0,60,0,182,0,81;
0,8,0,160,0,320,0,96;
2,0,102,0,500,0,449,0,112;
0,18,0,340,0,952,0,600,0,120;
4,0,184,0,1056,0,1535,0,712,0,128;
0,24,0,550,0,2216,0,2338,0,824,0,128;
4,0,246,0,2050,0,4367,0,3256,0,936,0,128;
0,32,0,936,0,5044,0,7728,0,4454,0,1040,0,128;
6,0,414,0,4054,0,11539,0,12360,0,5816,0,1160,0,128;
0,52,0,1658,0,10736,0,22410,0,18744,0,7352,0,1280,0,128;
8,0,620,0,7412,0,27039,0,39590,0,26576,0,9056,0,1408,0,128;
0,68,0,2596,0,21180,0,57296,0,65634,0,36312,0,10864,0,1536,0,128;
10,0,908,0,13022,0,59625,0,112526,0,102054,0,47954,0,12816,0,1664,0,128;
0,100,0,4312,0,41056,0,138444,0,204496,0,152648,0,61720,0,14872,0,1792,0,128;
14,0,1404,0,23112,0,126291,0,298136,0,347122,0,219228,0,77904,0,17056,0,1920,0,128;
0,142,0,6904,0,77136,0,314464,0,584236,0,560856,0,305264,0,96552,0,19360,0,2048,0,128;
18,0,2034,0,38898,0,254427,0,731536,0,1068766,0,863460,0,413418,0,117944,0,21792,0,2176,0,128;
0,196,0,10778,0,139276,0,678728,0,1537620,0,1850598,0,1282412,0,546464,0,142128,0,24352,0,2304,0,128;
24,0,3018,0,65388,0,496213,0,1704232,0,3026128,0,3048168,0,1843736,0,707754,0,169288,0,27040,0,2432,0,128;
		

Crossrefs

Cf. A192091 (row sums), A068924 (column m=0), A281791 (column m=1), A272473 (4 by n grid).

Formula

G.f. x*( -3*x^11*y^8 +7*x^4*y^7 +x^2*y^7 -24*x^6*y^7 -2*x^5*y^4 -y^5 -2*x^3*y^2 -16*x^9 -9*x^ 2*y +3*x^3 +13*x^5 +7*x^15 -6*x -3*y -22*x*y^4 -32*x*y^2 +16*x^11*y^6 -6*x^13*y^2 -14*x^ 15*y^4 +3*x^13 +14*x^5*y^6 -11*x^11 +6*x^7 -55*y^3*x^10 -17*x^2*y^3 +37*x^6*y -24*y^3*x^14 -48*x^10*y +2*x^17*y^2 -19*x^12*y -4*y^3 -55*x^12*y^3 -8*x^11*y^4 +51*x^8*y^5 +28*x^7*y^6 +72*x^6*y^3 +31*y^2*x^15 -58*x^13*y^4 +x^17 -64*x^11*y^2 +36*x^10*y^5 +55*x^8*y^3 -50*x^6*y^5 -4*x^4*y^3 -5*x^9*y^4 -5*x^8*y +60*y^2*x^5 +84*x^7*y^2 -12*x^9*y^6 +55*x^7*y^4 -2*x^12*y^5 -79*x^9*y^2 -2*x^16*y^3 +4*x^7*y^8 +11*x^4*y -20*x^4*y^5 +6*x^13*y^ 6 +15*x^16*y +17*x^14*y^5 -5*x^10*y^7 -26*x^8*y^7 +x^8*y^9 +21*y*x^14 +11*x^2*y^5 +x^7* y^10 -x^10*y^9 +14*x^3*y^4 +9*x^3*y^6 -5*y^7*x^12 +3*x^9*y^8) / (x^14 +x^13*y +x^12 -2*x^ 12*y^2 -x^11*y^3 -2*x^10*y^2 -x^10 -x^9*y^3 +x^8*y^4 -3*x^8 -3*x^8*y^2 -x^7*y -x^7*y^3 +x^6*y^4 +4*x^6*y^2 -y^3*x^5 +2*x^4 +y^2*x^4 -x^3*y +x^2 +x*y -1). - R. J. Mathar, May 02 2016
G.f. for column m=1: x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. - R. J. Mathar, May 02 2016, corrected Apr 10 2017
G.f. for column m=2: -8 +17*x^2 +2*x^4 -2*(9*x^16 +24*x^14 +17*x^12 -22*x^10 -39*x^8 -9*x^6 +13*x^4 +9*x^2 +4) / (x^6+x^4-1)^3. - R. J. Mathar, May 02 2016

A233247 Expansion of ( 1-x^3-x^2 ) / ( (x^3-x^2-1)*(x^3+2*x^2+x-1) ).

Original entry on oeis.org

1, 1, 1, 4, 9, 16, 36, 81, 169, 361, 784, 1681, 3600, 7744, 16641, 35721, 76729, 164836, 354025, 760384, 1633284, 3508129, 7535025, 16184529, 34762816, 74666881, 160376896, 344473600, 739894401, 1589218225, 3413480625, 7331811876, 15747991081, 33825095056
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2013

Keywords

Comments

a(n) is the number of tilings of a 3 X 2 X n room with bricks of 1 X 1 X 3 shape (and in that respect a generalization of A028447 which fills 3 X 2 X n rooms with bricks of 1 X 1 X 2 shape).
The inverse INVERT transform is 1, 0, 3, 2, 2, 4, 4, 6, 8, 10, .. , continued as in A068924.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) with half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal) and (1/2,1/2;3)-combs. A (w,g;m)-comb is a tile composed of m pieces of dimensions w X 1 separated horizontally by gaps of width g. - Michael A. Allen, Sep 24 2024

Crossrefs

Cf. A000930.

Programs

  • Maple
    A233247 := proc(n)
        A000930(n)^2 ;
    end proc:
    # second Maple program:
    a:= n-> (<<0|1|0>, <0|0|1>, <1|0|1>>^n)[3, 3]^2:
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 06 2013
  • Mathematica
    Table[Sum[Binomial[n-2i, i], {i,0,n/3}]^2, {n,0,50}] (* Wesley Ivan Hurt, Dec 06 2013 *)
    LinearRecurrence[{1,1,3,1,-1,-1},{1,1,1,4,9,16},40] (* Harvey P. Dale, Jan 14 2015 *)
    CoefficientList[Series[(1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x^3-x^2)/((x^3-x^2-1)*(x^3+2*x^2+x-1))) \\ G. C. Greubel, Apr 29 2017

Formula

a(n) = A000930(n)^2.
a(n) = a(n-1) + a(n-3) + 2*Sum_{r=3..n} ( A000931(r+2)*a(n-r) ). - Michael A. Allen, Sep 24 2024

A232621 The number of vertically fault-free domino tilings of the 5 X (2n) board.

Original entry on oeis.org

1, 8, 31, 175, 1015, 5911, 34447, 200767, 1170151, 6820135, 39750655, 231683791, 1350352087, 7870428727, 45872220271, 267362892895, 1558305137095, 9082467929671, 52936502440927, 308536546715887, 1798282777854391, 10481160120410455, 61088677944608335
Offset: 0

Views

Author

R. J. Mathar, Nov 27 2013

Keywords

Comments

A003775 counts the tilings of the 5 X (2n) board, and this sequence here counts only those that cannot be broken into tilings of two or more smaller 5 X (2n') boards with edge lengths n' < n by cutting "vertically" through the tiling parallel to the "short" side of length 5.
Technically speaking this is the inverse INVERT transform of A003775 (see the comment in A005178).

Crossrefs

Programs

  • PARI
    Vec((-18*x^2+13*x^3-x^4+x+1)/((1-x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 05 2016

Formula

G.f.: (1 + x - 18*x^2 + 13*x^3 - x^4)/((1-x)*(1 - 6*x + x^2)).
a(n) = 1 + 6*A001653(n) for n>1. - Bruno Berselli, Nov 27 2013
a(n) = 6*a(n-1) - a(n-2) - 4, n>=4. - R. J. Mathar, Nov 07 2015
a(n) = 1 + (3/2)*(3-2*sqrt(2))^n*(2+sqrt(2)) + (3-3/sqrt(2))*(3+2*sqrt(2))^n for n>1. - Colin Barker, Mar 05 2016
Showing 1-5 of 5 results.