cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A102541 Triangle read by rows, formed from antidiagonals of Losanitsch's triangle. T(n, k) = A034851(n-k, k), n >= 0 and 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 4, 1, 1, 3, 6, 2, 1, 4, 9, 6, 1, 1, 4, 12, 10, 3, 1, 5, 16, 19, 9, 1, 1, 5, 20, 28, 19, 3, 1, 6, 25, 44, 38, 12, 1, 1, 6, 30, 60, 66, 28, 4, 1, 7, 36, 85, 110, 66, 16, 1, 1, 7, 42, 110, 170, 126, 44, 4, 1, 8, 49, 146, 255, 236, 110, 20, 1, 1, 8, 56
Offset: 0

Views

Author

Gerald McGarvey, Feb 24 2005

Keywords

Comments

Row sums A102526 are essentially the same as A001224, A060312 and A068928.
Moving the terms in each column of this triangle, see the example, upwards to row 0 gives Losanitsch's triangle A034851 as a square array. - Johannes W. Meijer, Aug 24 2013
The number of ways to cover n-length line by exactly k 2-length segments excluding symmetric covers. - Philipp O. Tsvetkov, Nov 08 2013
Also the number of equivalence classes of ways of placing k 2 X 2 tiles in an n X 2 rectangle under all symmetry operations of the rectangle. - Christopher Hunt Gribble, Feb 16 2014
T(n, k) is the number of irreducible caterpillars with n+3 edges and diameter k+2. - Christian Barrientos, Apr 05 2020

Examples

			The first few rows of triangle T(n, k) are:
n/k: 0, 1, 2, 3
0:   1
1:   1
2:   1, 1
3:   1, 1
4:   1, 2, 1
5:   1, 2, 2
6:   1, 3, 4, 1
7:   1, 3, 6, 2
		

Crossrefs

Programs

  • Maple
    From Johannes W. Meijer, Aug 24 2013: (Start)
    T := proc(n,k) option remember: if n <0 then return(0) fi: if k < 0 or k > floor(n/2) then return(0) fi: A034851(n-k, k) end: A034851 := proc(n, k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1, (k-1)/2) else t := 0; fi; A034851(n-1, k-1) + A034851(n-1, k)-t; end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..16);  # End first program
    T := proc(n,k) option remember: if n < 0 then return(0) fi: if k < 0 or k > floor(n/2) then return(0) fi: if n=0 then return(1) fi: if type(n, even) or type(k, even) then procname(n-1, k) + procname(n-2, k-1) else procname(n-1, k) + procname(n-2, k-1) - binomial((n-3)/2-(k-1)/2, (n-3)/2-(k-1)) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..16); # End second program (End)
  • Mathematica
    t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2;
    t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2;
    T[n_, k_] := t[n - k, k];
    Table[T[n, k], {n, 0, 16}, {k, 0, Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Jul 21 2022 *)

Formula

T(n, k) = A034851(n-k, k), n >= 0 and 0 <= k <= floor(n/2).
T(n, k) = T(n-1, k) + T(n-2, k-1) - C((n-3)/2-(k-1)/2, (n-3)/2-(k-1)) except when n or k even then T(n, k) = T(n-1, k) + T(n-2, k-1) with T(0, 0) = 1, T(n, 0) = 0 for n<0 and T(n, k) = 0 for k < 0 and k > floor(n/2). - Johannes W. Meijer, Aug 24 2013

Extensions

Definition edited, incorrect formula deleted, keyword corrected and extended by Johannes W. Meijer, Aug 24 2013

A068926 Table read by antidiagonals: ti(r,s) is the number of incongruent ways to tile an r X s room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 3, 0, 3, 0, 1, 4, 2, 2, 4, 1, 0, 6, 0, 1, 0, 6, 0, 1, 8, 2, 2, 2, 2, 8, 1, 0, 12, 0, 2, 0, 2, 0, 12, 0, 1, 16, 4, 2, 1, 1, 2, 4, 16, 1, 0, 24, 0, 3, 0, 1, 0, 3, 0, 24, 0, 1, 33, 5, 3, 1, 1, 1, 1, 3, 5, 33, 1, 0, 49, 0, 4, 0, 1, 0, 1, 0, 4, 0, 49, 0
Offset: 0

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Examples

			Table begins:
  0, 1, 0, 1, 0, 1, 0, ...
  1, 1, 2, 3, 4, 6, 8, ...
  0, 2, 0, 2, 0, 2, 0, ...
  1, 3, 2, 1, 2, 2, 2, ...
  0, 4, 0, 2, 0, 1, 0, ...
  1, 6, 2, 2, 1, 1, 1, ...
  0, 8, 0, 2, 0, 1, 0, ...
  ...
		

Crossrefs

Cf. A068920 (total number of tilings), A052270 (count by area).
Cf. A068927 (row 2), A068928 (row 3), A068929 (row 4), A068930 (row 5), A068931 (row 6).

Programs

  • Mathematica
    (* See link above for Mathematica programs. *)
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    cs[r_, s_] := Which[s < 0, 0, r == 1, c[r, s], r == 2, cs[2, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0], OddQ[r], cs[r, s] = cs[r, s - 2 r + 2] + cs[r, s - 2 r - 2] + Boole[s == 0] + Boole[s == r - 1] + Boole[s == r + 1], EvenQ[r], cs[r, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0]];
    c1s[r_, s_] := Which[s <= 0, 0, r == 2, cs[r, s - 2] + Boole[s == 1], EvenQ[r], c2s[r, s - 2] + Boole[s == 1]];
    c2s[r_, s_] := Which[s <= 0, 0, r == 2, c2s[2, s] = c1s[2, s - 4] + Boole[s == 2], EvenQ[r], c2s[r, s] = c1s[r, s - 2 r + 4] + c1s[r, s - 2 r] + Boole[s == r - 2] + Boole[s == r]];
    ti[r_, s_] := Which[r > s, ti[s, r], r == s, 1 - Mod[r, 2], True, (c[r, s] + cs[r, s])/2];
    A068926[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; ti[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];
    Table[A068926[n], {n, 0, 100}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

A005683 Numbers of Twopins positions.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 22, 37, 63, 108, 186, 322, 559, 973, 1697, 2964, 5183, 9071, 15886, 27835, 48790, 85545, 150021, 263136, 461596, 809812, 1420813, 2492945, 4374273, 7675598, 13468787, 23634817, 41474548, 72780553, 127718046, 224125677, 393308019, 690200668
Offset: 3

Views

Author

Keywords

Comments

Appears to be a bisection of A068930. - Ralf Stephan, Apr 20 2004
The Ze3 and Ze4 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 lead to this sequence with a(1) = 1 and a(2) = 1; the recurrence relation below confirms these values and gives a(0) = 0. - Johannes W. Meijer, Jul 14 2011
The complete sequence by R. K. Guy in "Anyone for Twopins?" starts with a(0)=0, a(1)=1 and a(2)=1 and has g.f. x*(1-x-x^2)/(1-2*x+x^4+x^6). - Johannes W. Meijer, Aug 14 2011
a(n) is the number of equivalence classes of subsets of {1..n-2} without isolated elements up to reflection. The reflection of a subset is the set obtained by mapping each element i to n + 1 - i. For example, the a(6)=5 equivalence classes of subsets of {1..4} are {}, {1,2}/{3,4}, {2,3}, {1,2,3}/{2,3,4}, {1,2,3,4}. If reflections are not considered equivalent then A005251(n) gives the number of subsets of {1..n-2} without isolated elements. - Andrew Howroyd, Dec 24 2019

References

  • R. K. Guy, "Anyone for Twopins?", in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005683:=-(-1+z**2+z**3+z**4+z**5)/(z**3-z**2+2*z-1)/(z**3+z**2-1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    CoefficientList[Series[(1-x^2-x^3-x^4-x^5)/(1-2x+x^4+x^6),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,0,-1,0,-1},{1,2,3,5,8,13},40] (* Harvey P. Dale, Jun 20 2011 *)

Formula

G.f.: x^3*(1-x^2-x^3-x^4-x^5)/(1-2*x+x^4+x^6). - Ralf Stephan, Apr 20 2004
a(3)=1, a(4)=2, a(5)=3, a(6)=5, a(7)=8, a(8)=13, a(n)=2*a(n-1)- a(n-4)- a(n-6). - Harvey P. Dale, Jun 20 2011
a(n) = (A005251(n) + A000931(n+4))/2. - Andrew Howroyd, Dec 24 2019

Extensions

More terms from Harvey P. Dale, Jun 20 2011

A068924 Number of ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

6, 3, 2, 2, 4, 4, 6, 8, 10, 14, 18, 24, 32, 42, 56, 74, 98, 130, 172, 228, 302, 400, 530, 702, 930, 1232, 1632, 2162, 2864, 3794, 5026, 6658, 8820, 11684, 15478, 20504, 27162, 35982, 47666, 63144, 83648, 110810, 146792, 194458, 257602, 341250
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068930 for incongruent tilings, A068920 for more info. First column of A272474.

Formula

For n >= 6, a(n) = a(n-2) + a(n-3).
G.f.: x*(-6+x^4+7*x^3+4*x^2-3*x)/(-1+x^3+x^2). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 2*A000931(n+3) for n>=3. - R. J. Mathar, Dec 06 2013
Showing 1-4 of 4 results.