cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Philipp O. Tsvetkov

Philipp O. Tsvetkov's wiki page.

Philipp O. Tsvetkov has authored 24 sequences. Here are the ten most recent ones:

A307154 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 3-length segments.

Original entry on oeis.org

8, 2, 3, 6, 5, 2, 9, 6, 3, 1, 7, 7, 3, 3, 8, 3, 3, 6, 9, 0, 0, 6, 7, 1, 8, 7, 7, 8, 1, 1, 6, 4, 7, 8, 8, 7, 2, 1, 3, 9, 2, 3, 6, 6, 2, 0, 5, 3, 9, 2, 9, 8, 6, 8, 0, 9, 1, 4, 3, 7, 2, 3, 5, 0, 0, 7, 1, 8, 2, 2, 0, 1, 8, 0, 9, 8, 1, 2, 0, 0, 7, 9, 0, 9, 0, 5, 5, 8, 9, 2, 6, 4, 8, 7, 4, 0, 3, 0, 3, 3, 7, 1, 9, 6, 3, 8, 5, 4, 5, 9, 2, 8, 8, 9, 7, 9, 3, 3, 4, 2, 4, 8, 8, 7, 7, 2, 1, 2, 7, 1, 9, 6
Offset: 0

Author

Philipp O. Tsvetkov, Mar 27 2019

Keywords

Comments

Solution of the discrete parking problem when infinite lattice randomly filled with 3-length segments.
Solution of the discrete parking problem when infinite lattice randomly filled with 2-length segments is equal to 1-1/e^2 (see A219863).
Also, the limit of a(n) = (3 + 2*(n-3)*a(n-3) + (n-1)*(n-3)*a(n-1))/(n*(n-2)); a(0) = 0; a(1) = 0; a(2) = 0 as n tends to infinity.
If the length of the segments that randomly cover infinite lattice tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).

Examples

			0.8236529631773383369006718778116478872139236620539298680914372350071822...
		

Programs

  • Maple
    evalf(3*sqrt(Pi)*(erfi(2)-erfi(1))/(2*exp(4)), 120) # Vaclav Kotesovec, Mar 28 2019
  • Mathematica
    N[-((3 DawsonF[1])/E^3) + 3 DawsonF[2], 200] // RealDigits
  • PARI
    -imag(3*sqrt(Pi)*(erfc(2*I) - erfc(1*I)) / (2*exp(4))) \\ Michel Marcus, May 10 2019

Formula

Equals 3*(Dawson(2) - Dawson(1)/e^3).
Equals 3*sqrt(Pi)*(erfi(2) - erfi(1)) / (2*exp(4)).

A307132 Denominator of the expected fraction of occupied places on n-length lattice randomly filled with 2-length segments.

Original entry on oeis.org

1, 3, 6, 5, 45, 63, 420, 405, 14175, 17325, 187110, 552825, 14189175, 49116375, 729729000, 723647925, 8881133625, 109185701625, 2062396586250, 10257709336875, 428772250281375, 2348038513445625, 53791427762572500, 160789593855515625, 16025362854266390625
Offset: 1

Author

Philipp O. Tsvetkov, Mar 26 2019

Keywords

Comments

The limit of expected fraction of occupied places on n-length lattice randomly filled with 2-length segments at n tends to infinity is equal to 1-1/e^2 (see A219863).

Examples

			0, 1, 2/3, 5/6, 4/5, 37/45, 52/63, 349/420, 338/405, 11873/14175, ...
		

Crossrefs

Cf. A219863, A231580, A307131 (numerators).

Programs

  • Mathematica
    RecurrenceTable[{f[n] == (2 + 2 (n - 2) f[n - 2] + (n - 1) (n - 2) f[n - 1])/(n (n - 1)), f[0] == 0, f[1] == 0}, f, {n, 2, 100}] // Denominator

Formula

Denominator of f(n), where f(0)=0; f(1)=0 and f(n) = (2 + 2(n-2)f(n-2) + (n-1)(n-2)f(n-1))/(n(n-1)) for n>1.

A307131 Numerator of the expected fraction of occupied places on n-length lattice randomly filled with 2-length segments.

Original entry on oeis.org

1, 2, 5, 4, 37, 52, 349, 338, 11873, 14554, 157567, 466498, 11994551, 41582906, 618626159, 614191052, 7545655031, 92853583996, 1755370057489, 8737266957604, 365468962351379, 2002633668589496, 45904893141293831
Offset: 1

Author

Philipp O. Tsvetkov, Mar 26 2019

Keywords

Comments

The limit of expected fraction of occupied places on n-length lattice randomly filled with 2-length segments at n tends to infinity is equal to 1-1/e^2 (see A219863).

Examples

			0, 1, 2/3, 5/6, 4/5, 37/45, 52/63, 349/420, 338/405, 11873/14175, ...
		

Crossrefs

Cf. A219863, A231580, A307132 (denominators).

Programs

  • Mathematica
    RecurrenceTable[{f[n] == (2 + 2 (n - 2) f[n - 2] + (n - 1) (n - 2) f[n - 1])/(n (n - 1)),f[0] == 0, f[1] == 0}, f, {n, 2, 100}] // Numerator

Formula

Numerator of f(n), where f(0)=0; f(1)=0 and f(n) = (2 + 2(n-2)f(n-2) + (n-1)(n-2)f(n-1))/(n(n-1)) for n>1.

A307053 Decimal expansion of e + Pi + e*Pi + e^Pi + Pi^e + Pi*sqrt(e) + e*sqrt(Pi).

Original entry on oeis.org

6, 9, 9, 9, 7, 0, 9, 8, 7, 8, 2, 4, 1, 0, 1, 9, 3, 4, 8, 5, 4, 3, 0, 9, 5, 0, 8, 9, 9, 3, 8, 3, 1, 7, 2, 9, 6, 3, 9, 7, 1, 1, 4, 9, 1, 3, 7, 8, 7, 5, 6, 3, 6, 5, 6, 8, 0, 2, 4, 0, 1, 2, 1, 7, 8, 7, 3, 6, 1, 5, 4, 8, 7, 8, 4, 1
Offset: 2

Author

Philipp O. Tsvetkov, Mar 21 2019

Keywords

Comments

Curiously, the values of A105643 and A307054 are close to the integers 60 and 10, respectively, which leads to the value of this constant being close to 70. - Felix Fröhlich, May 26 2019

Examples

			69.99709878241019348543095089938317296397...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Pi + Pi^E + E Pi + E^Pi + E + E Sqrt[Pi] + Pi Sqrt[E], 170]][[1]]
  • PARI
    my(e=exp(1)); e + Pi + e*Pi + e^Pi + Pi^e + Pi*sqrt(e) + e*sqrt(Pi) \\ Michel Marcus, Mar 27 2019

Formula

Equals A307054 + A105643.

A307184 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 4-length segments.

Original entry on oeis.org

8, 0, 3, 8, 9, 3, 4, 7, 9, 9, 1, 5, 3, 7, 6, 9, 7, 2, 6, 6, 6, 2, 9, 7, 4, 1, 9, 5, 0, 3, 2, 1, 3, 4, 2, 0, 5, 4, 6, 8, 7, 9, 1, 6, 4, 8, 5, 7, 7, 0, 8, 3, 5, 9, 2, 3, 9, 7, 2, 9, 9, 3, 2, 8, 0, 7, 0, 9, 4, 5, 6, 0, 9, 5, 0, 7, 6, 0, 3, 6, 1, 5
Offset: 0

Author

Philipp O. Tsvetkov, Mar 28 2019

Keywords

Comments

The solution of the discrete parking problem when infinite lattice randomly filled with L-length segments at L=4.
At L=3 it is equal to 3*(Dawson(2) - Dawson(1)/e^3) (see A307154).
At L=2 it is equal to 1-1/e^2 (see A219863).
The general solution of the discrete parking problem when infinite lattice randomly filled with L-length segments is equal to L*e(-2H(L-1))*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3 + ... + t^(L-1)/(L-1))) dx, where H(L) is harmonic number.
Also, the limit of the following recurrence as n tends to infinity: a(n) = (4 + 2(n-4)*a(n-4) + (n-1)*(n-4)*a(n-1))/(n*(n-3)); a(0) = 0; a(1) = 0; a(2) = 0; a(3) = 0.
If L tends to infinity, then the fraction of occupied places is equal to Rényi's parking constant (see A050996).

Examples

			0.80389347991537697266629741950321342054687916485770835923972993280709456095...
		

Crossrefs

Programs

  • Maple
    evalf(Integrate(4*exp(2*(t + t^2/2 + t^3/3) - 11/3), t= 0..1), 120); # Vaclav Kotesovec, Mar 28 2019
  • Mathematica
    RealDigits[ N[(4*Integrate[E^(2*(t + t^2/2 + t^3/3)), {t, 0, 1}])/E^(11/3), 200]][[1]]
  • PARI
    intnum(t=0, 1, 4*exp(2*(t + t^2/2 + t^3/3) - 11/3)) \\ Michel Marcus, May 10 2019

Formula

4*Integral_{x=0..1} e^(2*(t + t^2/2 + t^3/3)) dx / e^(11/3).

A306883 Decimal expansion of the minimum value of the function f(x) = x^x^x^x.

Original entry on oeis.org

5, 9, 3, 2, 3, 7, 2, 9, 7, 7, 6, 9, 7, 2, 8, 4, 6, 4, 5, 5, 2, 0, 6, 0, 1, 9, 7, 9, 4, 7, 0, 8, 1, 7, 0, 0, 4, 2, 3, 8, 8, 3, 8, 8, 2, 3, 6, 2, 1, 6, 5, 7, 7, 7, 4, 5, 7, 6, 7, 1, 2, 8, 6, 0, 9, 6, 9, 9, 5, 0, 5, 8, 7, 1, 0, 6, 7, 8, 5, 7, 9, 1, 5, 2, 9, 0, 7, 1, 4, 3, 3, 3, 5, 3, 7, 9, 4, 8, 8, 4, 9, 4, 3, 2, 5, 4, 3, 5, 1
Offset: 0

Author

Philipp O. Tsvetkov, Mar 15 2019

Keywords

Comments

The minimum value of the function x^x^x^x which is obtained for x equal to A306579.

Examples

			0.5932372977697284645520601979470817...
		

Crossrefs

Cf. A306579.

Programs

  • Mathematica
    n = 500;
    (FindMinimum[x^x^x^x, {x, 0.34}, WorkingPrecision -> 3 n][[1]] // RealDigits)[[1]][[;; n]]
  • PARI
    my(y = solve(x=0.1, 1, 1 + x^x*log(x)*(1 + x*log(x)*(1 + log(x))))); y^y^y^y \\ Michel Marcus, Mar 27 2019

A307054 Decimal expansion of Pi*sqrt(e) + e*sqrt(Pi).

Original entry on oeis.org

9, 9, 9, 7, 6, 3, 9, 7, 2, 6, 5, 4, 7, 4, 7, 3, 4, 6, 6, 9, 8, 8, 2, 3, 0, 6, 0, 2, 7, 1, 2, 1, 5, 0, 6, 7, 9, 1, 2, 6, 4, 2, 2, 7, 3, 2, 4, 3, 8, 5, 5, 1, 9, 6, 7, 5, 5, 4, 4, 4, 9, 8, 6, 4, 9, 3, 3, 7, 6, 4, 8, 3, 9, 5, 2, 4, 4, 7, 3
Offset: 1

Author

Philipp O. Tsvetkov, Mar 21 2019

Keywords

Examples

			9.997639726547473466988230602712150679126422...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[E Sqrt[Pi] + Pi Sqrt[E], 170]][[1]]

A306579 Decimal expansion of the real number x such that f(x) = x^x^x^x is a minimum.

Original entry on oeis.org

2, 7, 4, 6, 8, 9, 3, 8, 5, 2, 9, 7, 0, 6, 3, 4, 6, 2, 4, 1, 3, 6, 2, 5, 3, 0, 0, 5, 3, 8, 1, 4, 5, 8, 5, 7, 5, 7, 8, 9, 9, 8, 8, 6, 5, 4, 3, 1, 2, 7, 7, 7, 0, 5, 4, 1, 2, 8, 1, 8, 6, 3, 6, 2, 8, 0, 3, 1, 6, 0, 4, 5, 0, 4, 0, 7, 2, 8, 3, 8, 8, 9, 3, 2, 6, 8, 3, 1, 1, 5, 5, 8, 4, 6, 6, 8, 0, 6, 0, 9, 5, 8, 2, 0, 4, 5, 7, 4, 0, 6
Offset: 0

Author

Philipp O. Tsvetkov, Mar 15 2019

Keywords

Comments

It satisfies 1 + x^x*log(x)*(1 + x*log(x)*(1 + log(x))) = 0.
The function x^x has a minimum at x = 1/e (A068985).

Examples

			0.274689385297063462413625300538145857578998865431277705412818636280...
		

Crossrefs

Programs

  • Mathematica
    n = 500;
    (x /.  FindMinimum[x^x^x^x, {x, 0.34}, WorkingPrecision -> 3 n][[2]][[1]] // RealDigits)[[1]][[;; n]]
  • PARI
    solve(x=0.1, 1, 1 + x^x*log(x)*(1 + x*log(x)*(1 + log(x)))) \\ Michel Marcus, Mar 15 2019

A319606 a(n) is that generation of the rule-30 1D cellular automaton started from a single ON cell in which n successive OFF cells appears for the first time after a(n-1).

Original entry on oeis.org

1, 4, 5, 9, 11, 21, 34, 45, 51, 88, 106, 131, 137, 158, 193, 251, 517, 772, 1029, 1283, 1539, 1794, 2052, 2305, 2561, 4101, 5121, 8197, 10241, 12291, 16388, 20482, 32772, 36865, 49154, 57345, 65539, 262150, 294913, 786437, 851969, 1310724, 1441793, 1835011
Offset: 0

Author

Philipp O. Tsvetkov, Sep 24 2018

Keywords

Comments

OFF cells outside the triangle of active cells are ignored.

Examples

			The Rule-30 1D cellular automaton started from a single ON (.) cell generates the following triangle:
1                          .
2                        . . .
3                      . . 0 0 .
4                    . . 0 . . . .
5                  . . 0 0 . 0 0 0 .
6                . . 0 . . . . 0 . . .
7              . . 0 0 . 0 0 0 0 . 0 0 .
8            . . 0 . . . . 0 0 . . . . . .
9          . . 0 0 . 0 0 0 . . . 0 0 0 0 0 .
10       . . 0 . . . . 0 . . 0 0 . 0 0 0 . . .
11     . . 0 0 . 0 0 0 0 . 0 . . . . 0 . . 0 0 .
12   . . 0 . . . . 0 0 . . 0 . 0 0 0 0 . 0 . . . .
13 . . 0 0 . 0 0 0 . . . 0 0 . . 0 0 . . 0 . 0 0 0 .
0 OFF cell appears for the first time in generation (line) 1, thus a(0) = 1;
1 consecutive OFF cells (0) appear for the first time after line 1 in generation (line) 4, thus a(1) = 4;
2 consecutive OFF cells (00) appear for the first time after (line) 4 in generation (line) 5, thus a(2) = 5. [Corrected by _Rémy Sigrist_, Jul 06 2020]
		

Crossrefs

Cf. A317530.

Programs

  • C
    See Links section.
  • Mathematica
    CellularAutomaton[30, {{1}, 0}, 20000];
    (Reverse[Internal`DeleteTrailingZeros[
          Reverse[Internal`DeleteTrailingZeros[#]]]]) & /@ %;
    ls = Table[
       Max[Differences[Position[Flatten@{1, %[[n]], 1}, 1]]] - 1, {n, 1,
        20000}];
    res = {1};
    Table[Position[ls, n] // Flatten, {n, 100}];
    For[n = 1, n < 40, n++,
    AppendTo[res, (Select[%[[n]], # > Last[res] &, 1][[1]])]]
    res

Extensions

Data corrected and more terms from Rémy Sigrist, Jul 06 2020

A319780 a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n.

Original entry on oeis.org

2, 2, 1, 0, 2, 1, 0, 2, 1, 2, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 0, 2, 1
Offset: 1

Author

Philipp O. Tsvetkov, Sep 27 2018

Keywords

Comments

The length of the sequence is equal to 3^3^3 = 7625597484987.

Examples

			1D cellular automaton with rule=1 gives the following generations:
   1  ..........1.......... <------ start
   2  111111111...111111111 <------ end
   3  ..........1..........
   4  111111111...111111111
   5  ..........1..........
   6  111111111...111111111
   7  ..........1..........
The period is 2, thus a(1) = 2.
For rule=150:
   1  ..........1..... <------ start
   2  .........22..... <------ end
   3  ........1.......
   4  .......22.......
   5  ......1.........
   6  .....22.........
   7  ....1...........
The period is 2, thus a(150) = 2.
For rule=100000000797:
   1  .........1....... <------ start
   2  ........2.2......
   3  ........111......
   4  .......2.112.....
   5  .......12........
   6  ......21.........
   7  ........2........ <------ end
   8  ........1........
   9  .......2.2.......
  10  .......111.......
  11  ......2.112......
  12  ......12.........
  13  .....21..........
  14  .......2.........
  15  .......1.........
The period is 7, thus a(100000000797) = 7.
a(10032729) = 12.
a(10096524) = 16.
		

Crossrefs

Cf. A180001.

Programs

  • Mathematica
    Table[
      Length[
      Last[
       FindTransientRepeat[(Internal`DeleteTrailingZeros[
            Reverse[Internal`DeleteTrailingZeros[#]]]) & /@
         CellularAutomaton[{i, 3}, {ConstantArray[0, 25], {1}, ConstantArray[0, 25]} // Flatten, 50], 2]]],
    {i, 1, 1000}
    ]