A307154 Decimal expansion of the fraction of occupied places on an infinite lattice cover with 3-length segments.
8, 2, 3, 6, 5, 2, 9, 6, 3, 1, 7, 7, 3, 3, 8, 3, 3, 6, 9, 0, 0, 6, 7, 1, 8, 7, 7, 8, 1, 1, 6, 4, 7, 8, 8, 7, 2, 1, 3, 9, 2, 3, 6, 6, 2, 0, 5, 3, 9, 2, 9, 8, 6, 8, 0, 9, 1, 4, 3, 7, 2, 3, 5, 0, 0, 7, 1, 8, 2, 2, 0, 1, 8, 0, 9, 8, 1, 2, 0, 0, 7, 9, 0, 9, 0, 5, 5, 8, 9, 2, 6, 4, 8, 7, 4, 0, 3, 0, 3, 3, 7, 1, 9, 6, 3, 8, 5, 4, 5, 9, 2, 8, 8, 9, 7, 9, 3, 3, 4, 2, 4, 8, 8, 7, 7, 2, 1, 2, 7, 1, 9, 6
Offset: 0
Examples
0.8236529631773383369006718778116478872139236620539298680914372350071822...
Links
- D. G. Radcliffe, Fat men sitting at a bar
- Philipp O. Tsvetkov, Stoichiometry of irreversible ligand binding to a one-dimensional lattice, Scientific Reports, Springer Nature (2020) Vol. 10, Article number: 21308.
- Eric Weisstein's World of Mathematics, Dawson's Integral
Programs
-
Maple
evalf(3*sqrt(Pi)*(erfi(2)-erfi(1))/(2*exp(4)), 120) # Vaclav Kotesovec, Mar 28 2019
-
Mathematica
N[-((3 DawsonF[1])/E^3) + 3 DawsonF[2], 200] // RealDigits
-
PARI
-imag(3*sqrt(Pi)*(erfc(2*I) - erfc(1*I)) / (2*exp(4))) \\ Michel Marcus, May 10 2019
Formula
Equals 3*(Dawson(2) - Dawson(1)/e^3).
Equals 3*sqrt(Pi)*(erfi(2) - erfi(1)) / (2*exp(4)).
Comments