Felix Fröhlich has authored 734 sequences. Here are the ten most recent ones:
A365514
Lucas-V pseudoprimes: composites c such that V_{c+1} == 2Q (mod c), where V_k is a Lucas sequence with parameters P and Q.
Original entry on oeis.org
913, 150267335403, 430558874533, 14760229232131, 936916995253453
Offset: 1
A365098
Primes p such that Sum_{k=1..p-1} q^2_p(k) == 0 (mod p), with q_p(k) a Fermat quotient.
Original entry on oeis.org
-
Join[{2}, Select[Prime[Range[2, 200]], Divisible[Numerator[BernoulliB[# - 1] - 1 + 1/# - (BernoulliB[2*# - 2] - 1 + 1/#)/2], #^2] &]] (* Amiram Eldar, Aug 22 2023 *)
-
forprime(p = 2, 10000, if(sum(j=1, p-1, (Mod(j, p^3)^(p-1) - 1)^2) % p^3 == 0, print1(p, ", "))) /* John Blythe Dobson, Apr 30 2024 */
A357365
Primes q such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where p = A151799(A151799(A151799(A151799(q)))).
Original entry on oeis.org
19, 67, 349, 2011, 22307, 13699249, 2018905087, 9809844767
Offset: 1
-
is(n) = my(b=precprime(precprime(precprime(precprime(n-1)-1)-1)-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
forprime(p=11, , if(is(p), print1(p, ", ")))
-
from sympy import nextprime
from itertools import islice
def agen():
p, m1, m2, m3, q = 2, 3, 5, 7, 11
while True:
if pow(p, q-1, q*q) == 1 or pow(q, p-1, p*p) == 1: yield q
p, m1, m2, m3, q = m1, m2, m3, q, nextprime(q)
print(list(islice(agen(), 5))) # Michael S. Branicky, Sep 30 2022
A357362
Primes q such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where p = A151799(q).
Original entry on oeis.org
7, 53, 59, 151057, 240733, 911135857
Offset: 1
-
is(n) = my(b=precprime(n-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
forprime(p=3, , if(is(p), print1(p, ", ")))
-
from sympy import nextprime
from itertools import islice
def agen():
p, q = 2, 3
while True:
if pow(p, q-1, q*q) == 1 or pow(q, p-1, p*p) == 1: yield q
p, q = q, nextprime(q)
print(list(islice(agen(), 5))) # Michael S. Branicky, Sep 30 2022
A357364
Primes p such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where q = A151800(A151800(A151800(p))).
Original entry on oeis.org
11, 23, 41, 107, 389, 1987673, 35603983
Offset: 1
-
is(n) = my(b=precprime(precprime(precprime(n-1)-1)-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
forprime(p=7, , if(is(p), print1(p, ", ")))
A357363
Primes p such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where q = A151800(A151800(p)).
Original entry on oeis.org
5, 19, 263, 1667
Offset: 1
-
is(n) = my(b=precprime(precprime(n-1)-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
forprime(p=5, , if(is(p), print1(p, ", ")))
A357361
Smallest number k such that A345112(k) = n.
Original entry on oeis.org
1, 5, 19, 118, 89, 123, 102, 145, 104, 777, 1133, 1012, 858, 942, 651, 150, 453, 132, 39, 112551, 39782, 23244, 81914, 43810, 40346
Offset: 1
-
eva(n) = subst(Pol(n), x, 10)
rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v
a345112(n, bound) = my(x=n, i=0); while(1, x=x+eva(rot(digits(x))); i++; if(i > bound, return(-1), if(digits(x)==Vecrev(digits(x)), break))); i
a(n) = if(n==0, return(0)); for(k=1, oo, if(a345112(k, n)==n, return(k)))
A355965
Primes p such that (p+10)^(p-1) == 1 (mod p^2).
Original entry on oeis.org
13, 41, 97, 809, 1151, 1657, 800011
Offset: 1
-
Select[Prime[Range[70000]],PowerMod[#+10,#-1,#^2]==1&] (* Harvey P. Dale, Mar 04 2024 *)
-
forprime(p=1, , if(Mod(p+10, p^2)^(p-1)==1, print1(p, ", ")))
A355964
Primes p such that (p+9)^(p-1) == 1 (mod p^2).
Original entry on oeis.org
13, 19, 2207, 26041, 332698495781
Offset: 1
-
forprime(p=1, , if(Mod(p+9, p^2)^(p-1)==1, print1(p, ", ")))
A355963
Primes p such that (p+8)^(p-1) == 1 (mod p^2).
Original entry on oeis.org
-
forprime(p=1, , if(Mod(p+8, p^2)^(p-1)==1, print1(p, ", ")))
Comments