cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Felix Fröhlich

Felix Fröhlich's wiki page.

Felix Fröhlich has authored 734 sequences. Here are the ten most recent ones:

A365514 Lucas-V pseudoprimes: composites c such that V_{c+1} == 2Q (mod c), where V_k is a Lucas sequence with parameters P and Q.

Original entry on oeis.org

913, 150267335403, 430558874533, 14760229232131, 936916995253453
Offset: 1

Author

Felix Fröhlich, Sep 07 2023

Keywords

Comments

The values are given in Table 2 in Baillie et al., 2021.
There are only five terms less than 10^15.

Crossrefs

Cf. A217120.

A365098 Primes p such that Sum_{k=1..p-1} q^2_p(k) == 0 (mod p), with q_p(k) a Fermat quotient.

Original entry on oeis.org

2, 11, 971
Offset: 1

Author

Felix Fröhlich, Aug 21 2023

Keywords

Comments

The congruence in the definition is given in Gy, 2018, Eq. 16.
The terms, except for the prime 2, satisfy the congruence B_{p-1} - 1 + 1/p == (B_{2p-2} - 1 + 1/p)/2 (mod p^2), with B_i a Bernoulli number (cf. Gy, 2018, Eq. 18).
Any odd prime that is a term of both A007540 and A197632, i.e., that is simultaneously a Wilson prime and a Lerch prime, is in this sequence (cf. Gy, 2018, Theorem 5).
An equivalent definition, better suited for computational purposes, is: "Primes p such that Sum_{k=1..p-1} (k^(p-1) - 1)^2 == 0 (mod p^3)." - John Blythe Dobson, Apr 30 2024
a(4) > 427000, if it exists (Gy, 2018). - Amiram Eldar, Aug 22 2023
a(4) > 39540000, if it exists. - John Blythe Dobson, Apr 30 2024

Crossrefs

Programs

  • Mathematica
    Join[{2}, Select[Prime[Range[2, 200]], Divisible[Numerator[BernoulliB[# - 1] - 1 + 1/# - (BernoulliB[2*# - 2] - 1 + 1/#)/2], #^2] &]] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    forprime(p = 2, 10000, if(sum(j=1, p-1, (Mod(j, p^3)^(p-1) - 1)^2) % p^3 == 0, print1(p, ", "))) /* John Blythe Dobson, Apr 30 2024 */

A357365 Primes q such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where p = A151799(A151799(A151799(A151799(q)))).

Original entry on oeis.org

19, 67, 349, 2011, 22307, 13699249, 2018905087, 9809844767
Offset: 1

Author

Felix Fröhlich, Sep 25 2022

Keywords

Crossrefs

Programs

  • PARI
    is(n) = my(b=precprime(precprime(precprime(precprime(n-1)-1)-1)-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
    forprime(p=11, , if(is(p), print1(p, ", ")))
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen():
        p, m1, m2, m3, q = 2, 3, 5, 7, 11
        while True:
            if pow(p, q-1, q*q) == 1 or pow(q, p-1, p*p) == 1: yield q
            p, m1, m2, m3, q = m1, m2, m3, q, nextprime(q)
    print(list(islice(agen(), 5))) # Michael S. Branicky, Sep 30 2022

Extensions

a(7)-a(8) from Michael S. Branicky, Sep 26 2022

A357362 Primes q such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where p = A151799(q).

Original entry on oeis.org

7, 53, 59, 151057, 240733, 911135857
Offset: 1

Author

Felix Fröhlich, Sep 25 2022

Keywords

Crossrefs

Programs

  • PARI
    is(n) = my(b=precprime(n-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
    forprime(p=3, , if(is(p), print1(p, ", ")))
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen():
        p, q = 2, 3
        while True:
            if pow(p, q-1, q*q) == 1 or pow(q, p-1, p*p) == 1: yield q
            p, q = q, nextprime(q)
    print(list(islice(agen(), 5))) # Michael S. Branicky, Sep 30 2022

Extensions

a(6) from Michael S. Branicky, Sep 26 2022

A357364 Primes p such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where q = A151800(A151800(A151800(p))).

Original entry on oeis.org

11, 23, 41, 107, 389, 1987673, 35603983
Offset: 1

Author

Felix Fröhlich, Sep 25 2022

Keywords

Crossrefs

Programs

  • PARI
    is(n) = my(b=precprime(precprime(precprime(n-1)-1)-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
    forprime(p=7, , if(is(p), print1(p, ", ")))

A357363 Primes p such that either p^(q-1) == 1 (mod q^2) or q^(p-1) == 1 (mod p^2), where q = A151800(A151800(p)).

Original entry on oeis.org

5, 19, 263, 1667
Offset: 1

Author

Felix Fröhlich, Sep 25 2022

Keywords

Crossrefs

Programs

  • PARI
    is(n) = my(b=precprime(precprime(n-1)-1)); Mod(b, n^2)^(n-1)==1 || Mod(n, b^2)^(b-1)==1
    forprime(p=5, , if(is(p), print1(p, ", ")))

A357361 Smallest number k such that A345112(k) = n.

Original entry on oeis.org

1, 5, 19, 118, 89, 123, 102, 145, 104, 777, 1133, 1012, 858, 942, 651, 150, 453, 132, 39, 112551, 39782, 23244, 81914, 43810, 40346
Offset: 1

Author

Felix Fröhlich, Sep 25 2022

Keywords

Crossrefs

Cf. A345112.

Programs

  • PARI
    eva(n) = subst(Pol(n), x, 10)
    rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v
    a345112(n, bound) = my(x=n, i=0); while(1, x=x+eva(rot(digits(x))); i++; if(i > bound, return(-1), if(digits(x)==Vecrev(digits(x)), break))); i
    a(n) = if(n==0, return(0)); for(k=1, oo, if(a345112(k, n)==n, return(k)))

A355965 Primes p such that (p+10)^(p-1) == 1 (mod p^2).

Original entry on oeis.org

13, 41, 97, 809, 1151, 1657, 800011
Offset: 1

Author

Felix Fröhlich, Jul 21 2022

Keywords

Comments

A computer search taking less than 3 seconds shows there are no further terms below the one millionth prime. - Harvey P. Dale, Mar 04 2024
I ran the PARI program below for 8.5 hours and it did not find any further terms. (I do not know how far it searched.) - N. J. A. Sloane, Mar 05 2024

Crossrefs

(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355964 (k=9).

Programs

  • Mathematica
    Select[Prime[Range[70000]],PowerMod[#+10,#-1,#^2]==1&] (* Harvey P. Dale, Mar 04 2024 *)
  • PARI
    forprime(p=1, , if(Mod(p+10, p^2)^(p-1)==1, print1(p, ", ")))

A355964 Primes p such that (p+9)^(p-1) == 1 (mod p^2).

Original entry on oeis.org

13, 19, 2207, 26041, 332698495781
Offset: 1

Author

Felix Fröhlich, Jul 21 2022

Keywords

Comments

a(6) > 10^13 if it exists. - Jason Yuen, May 12 2024

Crossrefs

(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355965 (k=10).

Programs

  • PARI
    forprime(p=1, , if(Mod(p+9, p^2)^(p-1)==1, print1(p, ", ")))

Extensions

a(5) from Jason Yuen, May 12 2024

A355963 Primes p such that (p+8)^(p-1) == 1 (mod p^2).

Original entry on oeis.org

1531, 7445287
Offset: 1

Author

Felix Fröhlich, Jul 21 2022

Keywords

Comments

a(3) > 34294200797 if it exists.

Crossrefs

(p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355962 (k=7), A355964 (k=9), A355965 (k=10).

Programs

  • PARI
    forprime(p=1, , if(Mod(p+8, p^2)^(p-1)==1, print1(p, ", ")))