John Blythe Dobson has authored 2 sequences.
A238490
Odd primes p that divide a Lucas quotient studied by H. C. Williams: A001353(p - (3/p))/p, where (3/p) is a Jacobi symbol.
Original entry on oeis.org
103, 2297860813
Offset: 1
LucasQuotient(103) = 103*851367555454046677501642274766916900879231854719584128208.
- John Blythe Dobson, Table of n, a(n) for n = 1..2
- Karl Dilcher and Ladislav Skula, A new criterion for the first case of Fermat's Last Theorem, Mathematics of Computation, 64 (1995) 363-392.
- Andreas-Stephan Elsenhans and Jörg Jahnel, The Fibonacci sequence modulo p^2 -- An investigation by computer for p < 1014, arxiv 1006.0824 [math.NT], 2010.
- H. C. Williams, Some formulas concerning the fundamental unit of a real quadratic field, Discrete Mathematics, 92 (1991), 431-440.
-
The following criteria are equivalent:
PrimeQ[p] &&
Mod[(MatrixPower[{{1,2},{1,3}}, p-JacobiSymbol[3,p]-1].{{1},{1}})[[2,1]], p^2]==0
PrimeQ[p] && Mod[Last[LinearRecurrence[{4,-1},{0,1}, p-JacobiSymbol[3,p]+1]], p^2]==0
-
isprime(p) && (Mod([2, 2; 1, 0], p^2)^(p-kronecker(3, p)))[2, 1]==0 \\ This test, which was used to find the second member of this sequence, is based on the test for A238736 devised by Charles R Greathouse IV
A238736
Balancing Wieferich primes: primes p that divide their Pell quotients, where the Pell quotient of p is A000129(p - (2/p))/p and (2/p) is a Jacobi symbol.
Original entry on oeis.org
13, 31, 1546463
Offset: 1
PellQuotient(13) = 6214 = 13*478; PellQuotient(31) = 3470274850 = 31*111944350.
- Zakariae Bouazzaoui, On Periods of Fibonacci Sequences and Real Quadratic p-rational Fields, Fibonacci Quart. 58 (2020), no. 5, 103-110. See p. 7.
- Karl Dilcher and Ladislav Skula, A new criterion for the first case of Fermat's Last Theorem, Mathematics of Computation, 64 (1995), 363-392.
- Utkal Keshari Dutta, Bijan Kumar Patel and Prasanta Kumar Ray, A brief remark on balancing-Wieferich primes, Mathematica, Vol. 60 (83), No. 1 (2018), 48-53 [Subscription required].
- Utkal Keshari Dutta, Bijan Kumar Patel and Prasanta Kumar Ray, Balancing non-Wieferich primes in arithmetic progressions, Proceedings - Mathematical Sciences, Vol. 129, No. 2 (2019), Article 21, DOI:10.1007/s12044-018-0459-3.
- Andreas-Stephan Elsenhans and Jörg Jahnel, The Fibonacci sequence modulo p^2 -- An investigation by computer for p < 10^14, arXiv 1006.0824 [math.NT], 2010.
- Georges Gras, On the structure of the Galois group of the Abelian closure of a number field, arXiv 1212.3588 [math.NT], 2013.
- Hao Pan, Lehmer's type congruences for lacunary harmonic sums, arXiv 0905.0941 [math.NT], 2009.
- G. K. Panda and S. S. Rout, Periodicity of Balancing Numbers, Acta Mathematica Hungarica 143 (2014), 274-286. Also on ResearchGate.
- Sudhansu Sekhar Rout, Balancing non-Wieferich primes in arithmetic progression and abc conjecture, Proc. Japan Acad. Ser. A Math. Sci., Volume 92, Number 9 (2016), 112-116.
- Zhi-Hong Sun, Combinatorial sum ... and its applications in Number Theory, III (English version), originally published in Chinese in Journal of Nanjing University Mathematical Biquarterly, 12 (1995), 90-102.
- Zhi-Hong Sun, Five congruences for primes, Fibonacci Quarterly, 40 (2002), 345-351.
- H. C. Williams, The influence of computers in the development of number theory, Computers & Mathematics with Applications, 8 (1982), 75-93.
- H. C. Williams, Some formulas concerning the fundamental unit of a real quadratic field, Discrete Mathematics, 92 (1991), 431--440.
-
Select[Prime[Range[1000]], Mod[Fibonacci[# - JacobiSymbol[2, #], 2]/#, #] == 0 &]
-
is(n)=isprime(n) && (Mod([2,1;1,0],n^2)^(n-kronecker(2,n)))[2,1]==0 \\ Charles R Greathouse IV, Mar 04 2014
Comments