cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John Blythe Dobson

John Blythe Dobson's wiki page.

John Blythe Dobson has authored 2 sequences.

A238490 Odd primes p that divide a Lucas quotient studied by H. C. Williams: A001353(p - (3/p))/p, where (3/p) is a Jacobi symbol.

Original entry on oeis.org

103, 2297860813
Offset: 1

Author

John Blythe Dobson, Mar 28 2014

Keywords

Comments

The condition for an odd prime p to be a member of this sequence is that p^2 divides A001353(p - (3/p)).
Neither this quotient, nor the Lucas sequence U(4, 1) on which it is based, has a common name; but its fundamental discriminant of 3 places it between the quotient based on the Pell sequence U(2, -1) with discriminant 2 (A000129), and that based on the Fibonacci sequence U(1, -1) with discriminant 5 (A000045). Values of p dividing the Pell quotient will be found under A238736, while for the Fibonacci quotient it is known that there is no such p < 9.7*10^14.
The interest in this family of number-theoretic quotients derives from H. C. Williams, "Some formulas concerning the fundamental unit of a real quadratic field," p. 440, which proves a formula connecting the present quotient with the Fermat quotient base 2 (A007663), the Fermat quotient base 3 (A146211), and the harmonic number H(floor(p/12)) (see the Formula section below). As is well known, the vanishing of each of these Fermat quotients is a necessary condition for the failure of the first case of Fermat's Last Theorem (see discussions under A001220 and A014127); and a corresponding result concerning this type of harmonic number was proved by Dilcher and Skula. Thus, the vanishing mod p of the quotient based on U(4, 1) is also a necessary condition for the failure of the first case of Fermat's Last Theorem.
The pioneering computation for this quotient appears to be that of Elsenhans and Jahnel, "The Fibonacci sequence modulo p^2," p. 5, who report 103 as the only value of a(n) < 10^9. Extending the search to p < 2.5*10^10 has found only one further solution, 2297860813.
Let LucasQuotient(p) = A001353(p - (3/p))/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, q_3 = (3^(p-1) - 1)/p = A146211(p) be the corresponding Fermat quotient of base 3, H(floor(p/12)) be a harmonic number. Then Williams (1991) shows that 6*(3/p)*LucasQuotient(p) == -6*q_2 - 3*q_3 - 2*H(floor(p/12)) (mod p).
Also with an initial 2, primes p such that p^2 divides A001353(p - Kronecker(12,p)) (note that 12 is the discriminant of the characteristic polynomial of A001353, x^2 - 4x + 1). - Jianing Song, Jul 28 2018

Examples

			LucasQuotient(103) = 103*851367555454046677501642274766916900879231854719584128208.
		

Crossrefs

Programs

  • Mathematica
    The following criteria are equivalent:
    PrimeQ[p] &&
      Mod[(MatrixPower[{{1,2},{1,3}}, p-JacobiSymbol[3,p]-1].{{1},{1}})[[2,1]], p^2]==0
    PrimeQ[p] && Mod[Last[LinearRecurrence[{4,-1},{0,1}, p-JacobiSymbol[3,p]+1]], p^2]==0
  • PARI
    isprime(p) && (Mod([2, 2; 1, 0], p^2)^(p-kronecker(3, p)))[2, 1]==0 \\ This test, which was used to find the second member of this sequence, is based on the test for A238736 devised by Charles R Greathouse IV

A238736 Balancing Wieferich primes: primes p that divide their Pell quotients, where the Pell quotient of p is A000129(p - (2/p))/p and (2/p) is a Jacobi symbol.

Original entry on oeis.org

13, 31, 1546463
Offset: 1

Author

John Blythe Dobson, Mar 04 2014

Keywords

Comments

Williams 1982 (p. 86), notes that p = 13, 31 and 1546463 are the only primes less than 10^8 for which the Pell quotient vanishes mod p. Elsenhans and Jahnel, "The Fibonacci sequence modulo p^2," p. 5, report in effect that there are no more such primes p < 10^9.
Williams 1991 (p. 440), and Sun 1995 pt. 3, Theorem 3.3, together prove a set of formulas connecting the Pell quotient with the Fermat quotient (base 2) (A007663) and harmonic numbers like H(floor(p/8)) (see example in the Formula section below). As is well known, the vanishing of the Fermat quotient (base 2) is a necessary condition for the failure of the first case of Fermat's Last Theorem (see discussion under A001220); and in light of a corresponding result of Dilcher and Skula concerning this type of harmonic number, the vanishing of the Pell quotient mod p is also a necessary condition for the failure of the first case of Fermat's Last Theorem.
There are no more terms up to 10^10.
Using the PARI script by Charles R Greathouse IV, I have extended the search from 10^10 to 10^12 without finding a further solution. - John Blythe Dobson, Mar 30 2015
Also primes p such that p^2 divides A001109((p - (2/p))/2). - Jianing Song, Oct 08 2018
From Felix Fröhlich, May 18 2019: (Start)
The term "balancing Wieferich prime" comes from Rout, 2016.
Primes p that satisfy the congruence B_{p-(8/p)} == 0 (mod p^2), where B_i denotes the i-th balancing number A001109(i) and (a/b) denotes the Jacobi symbol (cf. Rout, 2016, (1.6)).
Primes p such that the period of the balancing sequence (A001109) modulo p is equal to the period of the balancing sequence modulo p^2 (cf. Panda, Rout, 2014, p. 275).
Under the abc conjecture for the number field Q(sqrt(2)) there exist at least (log(x)/log(log(x)))*(log(log(log(x))))^m balancing non-Wieferich primes <= x such that p == 1 (mod k) for any integers k > 2, m > 0 (cf. Dutta, Patel, Ray, 2019). This is an improvement of an earlier result stating there are at least log(x)/log(log(x)) balancing non-Wieferich primes p == 1 (mod k) less than x (cf. Theorem 3.2 in Rout 2016). (End)

Examples

			PellQuotient(13) = 6214 = 13*478; PellQuotient(31) = 3470274850 = 31*111944350.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[Fibonacci[# - JacobiSymbol[2, #], 2]/#, #] == 0 &]
  • PARI
    is(n)=isprime(n) && (Mod([2,1;1,0],n^2)^(n-kronecker(2,n)))[2,1]==0 \\ Charles R Greathouse IV, Mar 04 2014

Formula

The condition for p to be a member of this sequence is A000129(p-e)/p == F(p-e, 2)/p == 0 (mod p), where F(p-e, 2) is the p-e'th Fibonacci polynomial evaluated at the argument 2, and e = (2/p) is a Jacobi Symbol.
Let PellQuotient(p) = A000129(p-e)/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, H(floor(p/8)) be a harmonic number, and e = (2/p) be a Jacobi Symbol. Then a result of Williams (1991), as refined by Sun (1995), shows that 2*PellQuotient(p) == -4*q_2 - H(floor(p/8)) (mod p).

Extensions

Name amended by Felix Fröhlich, May 26 2019