A355959 Primes p such that (p+2)^(p-1) == 1 (mod p^2).
5, 45827
Offset: 1
Crossrefs
Programs
-
PARI
forprime(p=1, , if(Mod(p+2, p^2)^(p-1)==1, print1(p, ", ")))
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
forprime(p=1, , if(Mod(p+2, p^2)^(p-1)==1, print1(p, ", ")))
forprime(p=1, , if(Mod(p+5, p^2)^(p-1)==1, print1(p, ", ")))
forprime(p=1, , if(Mod(p+6, p^2)^(p-1)==1, print1(p, ", ")))
forprime(p=1, , if(Mod(p+7, p^2)^(p-1)==1, print1(p, ", ")))
forprime(p=1, , if(Mod(p+9, p^2)^(p-1)==1, print1(p, ", ")))
Select[Prime[Range[70000]],PowerMod[#+10,#-1,#^2]==1&] (* Harvey P. Dale, Mar 04 2024 *)
forprime(p=1, , if(Mod(p+10, p^2)^(p-1)==1, print1(p, ", ")))
Comments