cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A068921 Number of ways to tile a 2 X n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961
Offset: 0

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068927 for incongruent tilings, A068920 for more info.
Cf. A000930, A078012, first column of A272471.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1}, {1, 1, 2}, 42] (* Robert G. Wilson v, Jul 12 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x^2)/(1-x-x^3)) \\ G. C. Greubel, Apr 26 2017

Formula

For n >= 3, a(n) = a(n-1) + a(n-3).
a(n) = A000930(n+1).
From Frank Ruskey, Jun 07 2009: (Start)
G.f.: (1+x^2)/(1-x-x^3).
a(n) = Sum_{j=0..floor(n/2)} binomial(n-2j+1, j). (End)
G.f.: Q(0)*( 1+x^2 )/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013

A068922 Number of ways to tile a 3 X 2n room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

3, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068928 for incongruent tilings, A068920 for more info. First column of A272472.
Essentially the same as A006355.
Essentially the same as A078642. - Georg Fischer, Oct 06 2018

Programs

  • GAP
    Concatenation([3],List([2..40],n->2*Fibonacci(n+1))); # Muniru A Asiru, Oct 07 2018
  • Magma
    [3] cat [2*Fibonacci(n+1): n in [2..50]]; // Vincenzo Librandi, Oct 07 2018
    
  • Maple
    with(combinat): 3,seq(2*fibonacci(n+1),n=2..40); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    Join[{3}, Table[2 Fibonacci[n + 1], {n, 2, 50}]] (* Vincenzo Librandi, Oct 07 2018 *)
    CoefficientList[Series[(x^2-x-3) / (x^2+x-1), {x, 0, 50}], x] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    Vec(x*(3+x-x^2) / (1-x-x^2) + O(x^50)) \\ Colin Barker, Jan 29 2017
    

Formula

For n >= 2, a(n) = 2*F(n+1), where F(n)=A000045(n) is the n-th Fibonacci number.
G.f.: x*(x^2-x-3) / (x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009
From Colin Barker, Jan 29 2017: (Start)
a(n) = (2^(-n)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n))) / sqrt(5) for n>1.
a(n) = a(n-1) + a(n-2) for n>3. (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2 + x. - Stefano Spezia, Apr 18 2022

A068926 Table read by antidiagonals: ti(r,s) is the number of incongruent ways to tile an r X s room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 3, 0, 3, 0, 1, 4, 2, 2, 4, 1, 0, 6, 0, 1, 0, 6, 0, 1, 8, 2, 2, 2, 2, 8, 1, 0, 12, 0, 2, 0, 2, 0, 12, 0, 1, 16, 4, 2, 1, 1, 2, 4, 16, 1, 0, 24, 0, 3, 0, 1, 0, 3, 0, 24, 0, 1, 33, 5, 3, 1, 1, 1, 1, 3, 5, 33, 1, 0, 49, 0, 4, 0, 1, 0, 1, 0, 4, 0, 49, 0
Offset: 0

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Examples

			Table begins:
  0, 1, 0, 1, 0, 1, 0, ...
  1, 1, 2, 3, 4, 6, 8, ...
  0, 2, 0, 2, 0, 2, 0, ...
  1, 3, 2, 1, 2, 2, 2, ...
  0, 4, 0, 2, 0, 1, 0, ...
  1, 6, 2, 2, 1, 1, 1, ...
  0, 8, 0, 2, 0, 1, 0, ...
  ...
		

Crossrefs

Cf. A068920 (total number of tilings), A052270 (count by area).
Cf. A068927 (row 2), A068928 (row 3), A068929 (row 4), A068930 (row 5), A068931 (row 6).

Programs

  • Mathematica
    (* See link above for Mathematica programs. *)
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    cs[r_, s_] := Which[s < 0, 0, r == 1, c[r, s], r == 2, cs[2, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0], OddQ[r], cs[r, s] = cs[r, s - 2 r + 2] + cs[r, s - 2 r - 2] + Boole[s == 0] + Boole[s == r - 1] + Boole[s == r + 1], EvenQ[r], cs[r, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0]];
    c1s[r_, s_] := Which[s <= 0, 0, r == 2, cs[r, s - 2] + Boole[s == 1], EvenQ[r], c2s[r, s - 2] + Boole[s == 1]];
    c2s[r_, s_] := Which[s <= 0, 0, r == 2, c2s[2, s] = c1s[2, s - 4] + Boole[s == 2], EvenQ[r], c2s[r, s] = c1s[r, s - 2 r + 4] + c1s[r, s - 2 r] + Boole[s == r - 2] + Boole[s == r]];
    ti[r_, s_] := Which[r > s, ti[s, r], r == s, 1 - Mod[r, 2], True, (c[r, s] + cs[r, s])/2];
    A068926[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; ti[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];
    Table[A068926[n], {n, 0, 100}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

A165633 Number of tatami-free rooms of given size A165632(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 4, 2, 1, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2009

Keywords

Comments

Number of rectangles of size A165632(n) which cannot be tiled with tatamis of size 1x2 such that not more than 3 tatamis meet at any point.

Examples

			a(1)=1 because the rectangle of size 7x10 is the only one of size 70 that cannot be filled with 2x1 tiles without having 4 tiles meet in some point.
a(237)=5 because there are 5 different rectangles of size A165632(237)=1320 which cannot be tiled in the given way.
		

Crossrefs

Cf. A068920.

Formula

A165633 = #{ {r,c} | rc = A165632(n) }.

A165632 Sizes of tatami-free rooms.

Original entry on oeis.org

70, 88, 96, 108, 126, 130, 140, 150, 154, 160, 176, 180, 192, 198, 204, 208, 216, 228, 234, 238, 240, 250, 252, 260, 266, 270, 280, 286, 294, 300, 304, 308, 320, 322, 330, 336, 340, 348, 352, 360, 368, 372, 374, 378, 384, 390, 396, 400, 408, 414, 416, 418
Offset: 1

Views

Author

M. F. Hasler, Sep 26 2009

Keywords

Comments

Even numbers s such that some rectangle of size s=r*c (r,c positive integers) cannot be tiled with tatamis of size 1x2 such that not more than 3 tatamis meet at any point.
The number of different rectangles of size a(n) which have this property is given in A165633(n).

Examples

			a(1)=70 because the rectangle of size 7x10 is the smallest that cannot be filled with 2x1 tiles without having 4 tiles meet in some point.
		

Crossrefs

Cf. A068920.

Formula

A165632 = { r*c in 2Z | A068920(r,c)=0 }

A068924 Number of ways to tile a 5 X 2n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

6, 3, 2, 2, 4, 4, 6, 8, 10, 14, 18, 24, 32, 42, 56, 74, 98, 130, 172, 228, 302, 400, 530, 702, 930, 1232, 1632, 2162, 2864, 3794, 5026, 6658, 8820, 11684, 15478, 20504, 27162, 35982, 47666, 63144, 83648, 110810, 146792, 194458, 257602, 341250
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068930 for incongruent tilings, A068920 for more info. First column of A272474.

Formula

For n >= 6, a(n) = a(n-2) + a(n-3).
G.f.: x*(-6+x^4+7*x^3+4*x^2-3*x)/(-1+x^3+x^2). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 2*A000931(n+3) for n>=3. - R. J. Mathar, Dec 06 2013

A052270 Consider a room of size r X s where rs = 2n and 1 <= r <= s; count ways to arrange n Tatami mats in room; a(n) = total number of ways for all choices of r and s. Two arrangements are considered the same if one is a rotation or reflection of the other.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 9, 14, 19, 27, 34, 56, 70, 105, 152, 218, 308, 466, 654, 966, 1407, 2052, 2979, 4399, 6378, 9361, 13697, 20051, 29308, 43035, 62885, 92204, 135053, 197871, 289775, 424891, 622199, 911988, 1336319, 1958344, 2869418, 4205888
Offset: 1

Views

Author

Keywords

Comments

Tatami mats are of size 1 X 2; at most 3 may meet at a point.

Examples

			For n = 3 there are 2 ways to cover a 2 X 3 room and 1 way to cover a 1 X 6 room, so a(3)=3:
._____. ._____.
|___| | | | | | .___________.
|___|_| |_|_|_| |___|___|___|
		

Crossrefs

Cf. A067925 for total number of tilings, A068926 for table of number of incongruent tilings of an r X s room.

Programs

  • Mathematica
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    cs[r_, s_] := Which[s < 0, 0, r == 1, c[r, s], r == 2, cs[2, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0], OddQ[r], cs[r, s] = cs[r, s - 2 r + 2] + cs[r, s - 2 r - 2] + Boole[s == 0] + Boole[s == r - 1] + Boole[s == r + 1], EvenQ[r], cs[r, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0]];
    c1s[r_, s_] := Which[s <= 0, 0, r == 2, cs[r, s - 2] + Boole[s == 1], EvenQ[r], c2s[r, s - 2] + Boole[s == 1]];
    c2s[r_, s_] := Which[s <= 0, 0, r == 2, c2s[2, s] = c1s[2, s - 4] + Boole[s == 2], EvenQ[r], c2s[r, s] = c1s[r, s - 2 r + 4] + c1s[r, s - 2 r] + Boole[s == r - 2] + Boole[s == r]];
    ti[r_, s_] := Which[r > s, ti[s, r], r == s, 1 - Mod[r, 2], True, (c[r, s] + cs[r, s])/2];
    A052270[n_] := Module[{i, divs}, divs = Divisors[2 n]; Sum[ti[divs[[i]], 2 n/divs[[i]]], {i, 1, Ceiling[Length[divs]/2]}]];
    Table[A052270[n], {n, 1, 50}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

Extensions

Extended by Dean Hickerson, Mar 01 2002

A067925 Consider a room of size r X s where rs = 2n and 1 <= r, 1 <= s; count ways to arrange n Tatami mats in room; a(n) = total number of ways for all choices of r and s. Two arrangements are distinguished if one is a rotation or reflection of the other.

Original entry on oeis.org

2, 4, 8, 10, 14, 28, 28, 42, 70, 90, 122, 204, 260, 386, 592, 824, 1192, 1810, 2558, 3764, 5580, 8064, 11794, 17438, 25338, 37144, 54626, 79762, 116852, 171650, 250984, 367874, 539668, 790110, 1157912, 1697978, 2487050, 3645012, 5343444
Offset: 1

Views

Author

Yasutoshi Kohmoto Mar 05 2002

Keywords

Comments

Tatami mats are of size 1 X 2; at most 3 may meet at a point.

Examples

			For n=3 there are 3 incongruent tilings, shown below. These can be rotated to produce 8 tilings, so a(3)=8.
._____. ._____.
|___| | | | | | .___________.
|___|_| |_|_|_| |___|___|___|
		

Crossrefs

Cf. A052270 for number of incongruent tilings, A068920 for table of number of tilings of an r X s room.

Programs

  • Mathematica
    (* See link for Mathematica programs. *)
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]];
    A067925[n_] := Module[{i, divs}, divs = Divisors[2 n]; Sum[t[divs[[i]], 2 n/divs[[i]]], {i, 1, Length[divs]}]];
    Table[A067925[n], {n, 1, 50}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

Extensions

Edited by Dean Hickerson, Mar 11 2002

A068923 Number of ways to tile a 4 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 4, 4, 2, 3, 3, 3, 5, 5, 6, 8, 8, 11, 13, 14, 19, 21, 25, 32, 35, 44, 53, 60, 76, 88, 104, 129, 148, 180, 217, 252, 309, 365, 432, 526, 617, 741, 891, 1049, 1267, 1508, 1790, 2158, 2557, 3057, 3666, 4347, 5215, 6223, 7404, 8881, 10570, 12619, 15104, 17974
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068929 for incongruent tilings, A068920 for more info. First column of A272473.

Formula

For n >= 9, a(n) = a(n-3) + a(n-5).
G.f.: x*(x+1)*(2*x^6+x^5+x^4-x^2-3*x-1)/(-1+x^5+x^3) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.

A068925 Number of ways to tile a 6 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 9, 6, 3, 2, 2, 2, 1, 1, 2, 3, 4, 3, 3, 3, 4, 6, 6, 7, 6, 7, 9, 10, 13, 12, 14, 15, 17, 22, 22, 27, 27, 31, 37, 39, 49, 49, 58, 64, 70, 86, 88, 107, 113, 128, 150, 158, 193, 201, 235, 263, 286, 343, 359, 428, 464, 521, 606, 645, 771, 823, 949, 1070, 1166, 1377, 1468
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Comments

For n >= 12, a(n) = a(n-5) + a(n-7).

Crossrefs

Cf. A068931 for incongruent tilings, A068920 for more info.

Formula

G.f.: x*(1-2*x^10-6*x^9-11*x^8-6*x^7-7*x^6+x^5+2*x^4+3*x^3+6*x^2+9*x)/(1-x^7-x^5) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
Showing 1-10 of 12 results. Next