cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1007 results. Next

A179407 Values x for records of minima of positive distance d between a fifth power of positive integer x and a square of integer y such d = x^5 - y^2 (x != k^2 and y != k^5).

Original entry on oeis.org

8, 55, 76, 377, 430, 499, 655, 804, 1827, 5350, 10805, 15433, 22108, 44729, 44817, 96001, 747343, 748635, 952463, 7626590, 10741787, 12798893, 14957531, 15873532
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values, see A179406.
For y values, see A179408.
Conjecture (from Artur Jasinski):
For any positive number x >= A179407(n), the distance d between the fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx (* Artur Jasinski, Jul 13 2010 *)

Formula

a(n)^5-A179408(n)^2 = A179406(n).

A179408 Values y for records of minima of positive distance d between a fifth power of a positive integer x and a square of an integer y such d = x^5 - y^2 (x != k^2 and y != k^5).

Original entry on oeis.org

181, 22434, 50354, 2759646, 3834168, 5562261, 10980023, 18329057, 142674503, 2093555387, 12135618855, 29588700403, 72673092233, 423129175811, 425213412449, 2855547523353, 482836315990072, 484925830443335
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values, see A179406.
For x values, see A179407.
Conjecture (from Artur Jasinski):
For any positive number x >= A179407(n), the distance d between fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (* Artur Jasinski, Jul 13 2010 *)

Formula

A179407(n)^5-a(n)^2 = A179406(n).

A160464 The Eta triangle.

Original entry on oeis.org

-1, -11, 2, -114, 29, -2, -3963, 1156, -122, 4, -104745, 32863, -4206, 222, -4, -3926745, 1287813, -184279, 12198, -366, 4, -198491580, 67029582, -10317484, 781981, -30132, 562, -4
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The ES1 matrix coefficients are defined by ES1[2*m-1,n] = 2^(2*m-1) * int(y^(2*m-1)/(cosh(y))^(2*n),y=0..infinity)/(2*m-1)! for m = 1, 2, 3, .. and n = 1, 2, 3 .. .
This definition leads to ES1[2*m-1,n=1] = 2*eta(2*m-1) and the recurrence relation ES1[2*m-1,n] = ((2*n-2)/(2*n-1))*(ES1[2*m-1,n-1] - ES1[2*m-3,n-1]/(n-1)^2) which we used to extend our definition of the ES1 matrix coefficients to m = 0, -1, -2, .. . We discovered that ES1[ -1,n] = 0.5 for n = 1, 2, .. . As usual eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function.
The coefficients in the columns of the ES1 matrix, for m = 1, 2, 3, .. , and n = 2, 3, 4 .. , can be generated with the polynomials GF(z,n) for which we found the following general expression GF(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GF(z;n=1) + ETA(z,n))/p(n).
The CFN1(z,n) polynomials depend on the central factorial numbers A008955.
The ETA(z,n) are the Eta polynomials which lead to the Eta triangle.
The zero patterns of the Eta polynomials resemble a UFO. These patterns resemble those of the Zeta, Beta and Lambda polynomials, see A160474, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Eta triangle. The second Maple algorithm generates the ES1[2*m-1,n] coefficients for m= 0, -1, -2, -3, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators of the Taylor series for tan(x), A156769(n).
Some of our results are conjectures based on numerical evidence, see especially A160466.

Examples

			The first few rows of the triangle ETA(n,m) with n=2,3,.. and m=1,2,... are
  [ -1]
  [ -11, 2]
  [ -114, 29, -2]
  [ -3963, 1156, -122, 4].
The first few ETA(z,n) polynomials are
  ETA(z,n=2) = -1;
  ETA(z,n=3) = -11+2*z^2;
  ETA(z,n=4) = -114 + 29*z^2 - 2*z^4.
The first few CFN1(z,n) polynomials are
  CFN1(z,n=2) = (z^2-1);
  CFN1(z,n=3) = (z^4 - 5*z^2 + 4);
  CFN1(z,n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GF(z;n) are:
  GF(z;n=2) = ((-1)*2*(z^2 - 1)*GF(z;n=1) + (- 1))/3;
  GF(z;n=3) = (4*(z^4 - 5*z^2+4) *GF(z;n=1) + (-11 + 2*z^2))/30;
  GF(z;n=4) = ((-1)*4*(z^6 - 14*z^4 + 49*z^2 - 36)*GF(z;n=1) + (-114 + 29*z^2 - 2*z^4))/315.
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

The r(n) sequence equals A062383 (n>=1).
The p(n) sequence equals A160473(n) (n>=2).
The GCS(n) sequence equals the Geometric Connell sequence A049039(n).
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The q(n) sequence leads to A081729 and the 'gossip sequence' A007456.
The first right hand column equals A053644 (n>=1).
The first left hand column equals A160465.
The row sums equal A160466.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. A094665 and A160468.
Cf. the Zeta, Beta and Lambda triangles A160474, A160480 and A160487.
Cf. A162440 (EG1 matrix).

Programs

  • Maple
    nmax:=8; c(2 ):= -1/3: for n from 3 to nmax do c(n) := (2*n-2)*c(n-1)/(2*n-1)-1/((n-1)*(2*n-1)) end do: for n from 2 to nmax do GCS(n-1) := ln(1/(2^(-(2*(n-1)-1-floor(ln(n-1)/ ln(2))))))/ln(2); p(n) := 2^(-GCS(n-1))*(2*n-1)!; ETA(n, 1) := p(n)*c(n); ETA(n, n) := 0 end do: mmax:=nmax: for m from 2 to mmax do for n from m+1 to nmax do q(n) := (1+(-1)^(n-3)*(floor(ln(n-1)/ln(2)) - floor(ln(n-2)/ln(2)))): ETA(n, m) := q(n)*((-1)*ETA(n-1, m-1)+(n-1)^2*ETA(n-1, m)) end do end do: seq(seq(ETA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=20; m:=1; ES1row:=1-2*m; with (combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j=-k..k) end proc: mmax1:=nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!); ES1[-2*m1+1,1] := 2*(1-2^(1-(1-2*m1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ES1[1-2*m1, n] := (-1)^(n-1)*M(n-1)*sum((-1)^(k+1)*cfn1(n-1,k-1)* ES1[2*k-2*n-2*m1+1, 1], k=1..n) od: od: seq(ES1[1-2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered an interesting relation between the Eta triangle coefficients ETA(n,m) = q(n)*((-1)*ETA(n-1,m-1)+(n-1)^2*ETA(n-1,m)), for n = 3, 4, ... and m = 2, 3, ... , with
q(n) = 1 + (-1)^(n-3)*(floor(log(n-1)/log(2)) - floor(log(n-2)/log(2))) for n = 3, 4, ....
See A160465 for ETA(n,m=1) and furthermore ETA(n,n) = 0 for n = 2, 3, ....
The generating functions GF(z;n) of the coefficients in the matrix columns are defined by
GF(z;n) = sum_{m>=1} ES1[2*m-1,n] * z^(2*m-2), with n = 1, 2, 3, .... This leads to
GF(z;n=1) = (2*log(2) - Psi(z) - Psi(-z) + Psi(1/2*z) + Psi(-1/2*z)); Psi(z) is the digamma-function.
GF(z;n) = ((2*n-2)/(2*n-1)-2*z^2/((n-1)*(2*n-1)))*GF(z;n-1)-1/((n-1)*(2*n-1)).
We found for GF(z;n), for n = 2, 3, ..., the following general expression:
GF(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GF(z;n=1) + ETA(z,n) )/p(n) with
r(n) = 2^floor(log(n-1)/log(2)+1) and
p(n) = 2^(-GCS(n))*(2*n-1)! with
GCS(n) = log(1/(2^(-(2*(n-1)-1-floor(log(n-1)/ log(2))))))/log(2).

A156925 FP2 polynomials related to the generating functions of the left hand columns of the A156920 triangle.

Original entry on oeis.org

1, 1, 1, 1, 8, -11, -6, 1, 38, -108, -242, 839, -444, -180, 1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240, 1, 487, 720, -130472, 1277794, -4193514, -6504496
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

The FP2 polynomials appear in the numerators of the GF2 o.g.f.s. of the left hand columns of A156920. The FP2 can be calculated with the formula of the LHC sequence, see A156920, and the formula for the general structure of the generating function GF2, see below.
An appropriate name for the FP2 polynomials seems to be the flower polynomials of the second kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP2 and the FP1, see A156921, resemble each other closely.
A Maple program that generates for a left hand column with a certain LHCnr its GF2 and FP2 can be found below. LHCnr stands for left hand column number and starts from 1.

Examples

			The first few rows of the "triangle" of the coefficients of the FP2 polynomials.
In the columns the coefficients of the powers of z^m, m=0,1,2,..., appear.
  [1]
  [1, 1]
  [1, 8, -11, -6]
  [1, 38, -108, -242, 839, -444, -180]
  [1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240]
Matrix of the coefficients of the FP2 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,...
  [1, 0, 0, 0, 0, 0, 0]
  [1, 1, 0, 0, 0, 0, 0]
  [1, 8 , -11, -6, 0, 0, 0]
  [1, 38, -108, -242, 839, -444, -180]
The first few FP2 polynomials are:
  FP2(z; LHCnr = 1) = 1
  FP2(z; LHCnr = 2) = (1+z)
  FP2(z; LHCnr = 3) = 1+8*z-11*z^2-6*z^3
Some GF2(z;LHCnr) are:
  GF2(z; LHCnr = 3) = (1+8*z-11*z^2-6*z^3)/((1-z)^3*(1-2*z)^2*(1-3*z))
  GF2(z; LHCnr = 4) = (1+38*z-108*z^2-242*z^3+839*z^4-444*z^5-180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z))
		

Crossrefs

For the first few GF2's see A050488, A142965, A142966 and A142968.
Row sums(n) = A156926(n).
The number of FP2 terms follow the 'Lazy Caterer's sequence' A000124.
For the polynomials in the denominators of the GF2(z;LHCnr) see A157703.

Programs

  • Maple
    LHCnr:=5; LHCmax:=(LHCnr)*(LHCnr-1)/2: RHCend:=LHCnr+LHCmax: for k from LHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..RHCend); for nx from 0 to LHCmax do num:=sort(sum(A[t]*z^t,t=0..LHCmax)): nom:=product((1-u*z)^(LHCnr-u+1),u=1..LHCnr); LHCb:=series(num/nom,z,nx+1); y:=coeff(LHCb,z,nx)-A[nx]; x:=LHC[LHCnr+nx]; A[nx]:=x-y; end do: FP2[LHCnr]:=sort(num,z, ascending); GenFun[LHCnr]:= FP2[LHCnr]/ product((1-m*z)^(LHCnr-m+1), m=1..LHCnr);

Formula

G.f.: GF2(z; LHCnr) = FP2(z; LHCnr)/Product_{m=1..LHCnr} (1-m*z)^(LHCnr-m+1).
Row sum(n+1) = (-1)^(n)*2*(n+1)!*Row sum(n); Row sum(n=0) = 1.

A160487 The Lambda triangle.

Original entry on oeis.org

1, -107, 10, 59845, -7497, 210, -6059823, 854396, -35574, 420, 5508149745, -827924889, 41094790, -765534, 4620, -8781562891079, 1373931797082, -75405128227, 1738417252, -17219202, 60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 18 2012

Keywords

Comments

The coefficients of the LS1 matrix are defined by LS1[2*m,n] = int(y^(2*m)/(sinh(y))^(2*n-1),y=0..infinity)/factorial(2*m) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= m.
This definition leads to LS1[2*m,n=1] = 2*lambda(2*m+1), for m = 1, 2, .. , and the recurrence relation LS1[2*m,n] = ((2*n-3)/(2*n-2))*(LS1[2*m-2,n-1]/(2*n-3)^2- LS1[2*m,n-1]). As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function.
These two formulas enable us to determine the values of the LS1[2*m,n] coefficients, for all integers m and all positive integers n, but not for all n. If we choose, somewhat but not entirely arbitrarily, LS1[m=0,n=1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LS1 matrix, for m = 0, 1, 2, .. , and n = 2, 3, 4 .. , can be generated with the GL(z;n) polynomials for which we found the following general expression GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n).
The CFN2(z;n) polynomials depend on the central factorial numbers A008956.
The LAMBDA(z;n) are the Lambda polynomials which lead to the Lambda triangle.
The zero patterns of the Lambda polynomials resemble a UFO. These patterns resemble those of the Eta, Zeta and Beta polynomials, see A160464, A160474 and A160480.
The first Maple algorithm generates the coefficients of the Lambda triangle. The second Maple algorithm generates the LS1[2*m,n] coefficients for m= -1, -2, -3, .. .
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle LAMBDA(n,m) with n=2,3,.. and m=1,2,.. are
  [1]
  [ -107, 10]
  [59845, -7497, 210]
  [ -6059823, 854396, -35574, 420]
The first few LAMBDA(z;n) polynomials are
  LAMBDA (z;n=2) = 1
  LAMBDA (z;n=3) = -107 +10*z^2
  LAMBDA (z;n=4) = 59845-7497*z^2+210*z^4
The first few CFN2(z;n) polynomials are
  CFN2(z;n=2) = (z^2-1)
  CFN2(z;n=3) = (z^4-10*z^2+9)
  CFN2(z;n=4) = (z^6- 35*z^4+259*z^2-225)
The first few generating functions GL(z;n) are:
  GL(z;n=2) = (6*(z^2-1)*GL(z,n=1) + (1)) /12
  GL(z;n=3) = (60*(z^4-10*z^2+9)*GL(z,n=1)+ (-107+10*z^2)) / 1440
  GL(z;n=4) = (1260*( z^6- 35*z^4+259*z^2-225)*GL(z,n=1) + (59845-7497*z^2+ 210*z^4))/907200
		

References

  • Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

Crossrefs

A160488 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160489 equals the rows sums.
A160490 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The LS1[ -2, n] coefficients lead to A002197, A002198 and A058962.
The LS1[ -2*m, 1] coefficients equal (-1)^(m+1)*A036282/A036283.
The CFN2(z, n) and the cfn2(n, k) lead to A008956.
Cf. The Eta, Zeta and Beta triangles A160464, A160474 and A160480.
Cf. A162448 (LG1 matrix)

Programs

  • Maple
    nmax:=7; for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))* (-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1,n-k1, n), k1=1..n) / (2*4^(n-1)*(2*n-1)!); LAMBDA(-2, n) := sum(2*(1-2^(2*k1-1))*(-bernoulli(2*k1) / (2*k1))*(-1)^(k1+n)* cfn2(n-1,n-k1), k1=1..n)/ factorial(2*n-2) end do: Lcgz(2) := 1/12: f(2) := 1/12: for n from 3 to nmax do Lcgz(n) := LAMBDA(-2, n-1)/((2*n-2)*(2*n-3)): f(n) := Lcgz(n)-((2*n-3)/(2*n-2))*f(n-1) end do: for n from 1 to nmax do b(n) := denom(Lcgz(n+1)) end do: for n from 1 to nmax do b(n) := 2*n*denom(Delta(n-1))/2^(2*n) end do: p(2) := b(1): for n from 2 to nmax do p(n+1) := lcm(p(n)*(2*n)*(2*n-1), b(n)) end do: for n from 2 to nmax do LAMBDA(n, 1) := p(n)*f(n) end do: mmax:=nmax: for n from 2 to nmax do LAMBDA(n, n) := 0 end do: for n from 1 to nmax do b(n) := (2*n)*(2*n-1)*denom(Delta(n-1))/ (2^(2*n)*(2*n-1)) end do: c(1) := b(1): for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(2*n+2)* (2*n+1), b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)/(6*(2*n)!) end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: for m from 2 to mmax do for n from m+1 to nmax do LAMBDA(n, m) := ZL(n)*(LAMBDA(n-1, m-1)-(2*n-3)^2*LAMBDA(n-1, m)) end do end do; seq(seq(LAMBDA(n,m), m=1..n-1), n=2..nmax);
    # End first program.
    nmax1:=10; m:=1; LS1row:=-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1:=nmax1: for m1 from 1 to mmax1 do LS1[-2*m1, 1] := 2*(1-2^(-(-2*m1+1)))*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do LS1[ -2*m1, n] := sum((-1)^(k1+1)*cfn2(n-1,k1-1)* LS1[2*k1-2*n-2*m1, 1], k1=1..n)/(2*n-2)! od: od: seq(LS1[ -2*m, n], n=1..nmax1-m+1);
    # End second program.

Formula

We discovered a remarkable relation between the Lambda triangle coefficients Lambda(n,m) = ZL(n)*(Lambda(n-1,m-1)-(2*n-3)^2*Lambda(n-1,m)) for n = 3, 4, .. and m = 2, 3, .. . See A160488 for LAMBDA(n,m=1) and furthermore LAMBDA(n,n) = 0 for n = 2, 3, .. .
We observe that the ZL(n) = A160479(n) sequence also rules the Zeta triangle A160474.
The generating functions GL(z;n) of the coefficients in the matrix columns are defined by
GL(z;n) = sum(LS1[2*m-2,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .. .
This definition, and our choice of LS1[m=0,n=1] = gamma, leads to GL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2) with Psi(z) the digamma-function. Furthermore we discovered that GL(z;n) =GL(z;n-1)*(z^2/((2*n-2)*(2*n-3)) -(2*n-3)/((2*n-2)))+LS1[ -2,n-1]/((2*n-2)*(2*n-3)) for n = 2, 3 , .. . with LS1[ -2,n] = (-1)^(n-1)*4*A058962(n-1)*A002197(n-1)/A002198(n-1) for n = 1, 2, .. , with A058962(n-1) = 2^(2*n-2)*(2*n-1).
We found the following general expression for the GL(z;n) polynomials, for n = 2, 3, ..
GL(z;n) = (h(n)*CFN2(z;n)*GL(z;n=1) + LAMBDA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160490(n).

A156921 FP1 polynomials related to the generating functions of the right hand columns of the A156920 triangle.

Original entry on oeis.org

1, 1, 1, 1, -6, 1, 7, -79, 119, 126, -270, 1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400, 1, 86, -2255, 5784, 300930, -3904584, 20663714, -41517272, -80232259, 657717054
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

The FP1 polynomials appear in the numerators of the GF1 o.g.f.s. of the right hand columns of A156920. The FP1 can be calculated with the formula for the RHC sequence, see A156920, and the formula for the general structure of the generating function GF1, see below.
An appropriate name for the FP1 polynomials seems to be the flower polynomials of the first kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP2, see A156925, and the FP1 resemble each other closely.
A Maple program that generates for a right hand column with a certain RHCnr its GF1 and FP1 can be found below. RHCnr stands for right hand column number and starts from 1.

Examples

			The first few rows of the "triangle" of the coefficients of the FP1 polynomials.
In the columns the coefficients of the powers of z^m, m=0,1,2,... , appear.
  [1]
  [1]
  [1, 1, -6]
  [1, 7, -79, 119, 126, -270]
  [1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400]
Matrix of the coefficients of the FP1 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,.. .
  [1, 0 ,0, 0, 0, 0, 0, 0, 0, 0]
  [1, 0 ,0, 0, 0, 0, 0, 0, 0, 0]
  [1, 1, -6, 0 ,0, 0, 0, 0, 0, 0]
  [1, 7, -79, 119, 126, -270, 0, 0, 0, 0]
  [1, 28, -515, 1654, 8689, -65864, 142371, -82242, -99090, 113400]
The first few FP1 polynomials are:
  FP1(z; RHCnr=1) = 1
  FP1(z; RHCnr=2) = 1
  FP1(z; RHCnr =3) = 1+z-6*z^2
Some GF1(z;RHCnr) are:
  GF1(z;RHCnr= 3) = (1+z-6*z^2)/((1-5*z)*(1-3*z)^2*(1-z)^3)
  GF1(z;RHCnr= 4) = (1+7*z-79*z^2+119*z^3+126*z^4-270*z^5)/((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
		

Crossrefs

For the first few GF1's see A000340, A156922, A156923, A156924.
The number of FP1 terms follow the triangular numbers A000217, with quite surprisingly one exception here a(0)=1.
Abs(Row sums (n)) = A098695(n).
For the polynomials in the denominators of the GF1(z;RHCnr) see A157702.

Programs

  • Maple
    RHCnr:=4: if RHCnr=1 then RHCmax :=1; else RHCmax:=(RHCnr-1)*(RHCnr)/2 end if: RHCend:=RHCnr+RHCmax: for k from RHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!) *x^p/(1-4*x)^(p+1),p=0..k)/(((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); RHC[k-RHCnr+1]:= coeff(fx,x,k-RHCnr)/2^(k-RHCnr) end do: a:=n-> RHC[n]: seq(a(n), n=1..RHCend-RHCnr+1); for nx from 0 to RHCmax do num:=sort(sum(A[t]*z^t, t=0..RHCmax)); nom:=Product((1-(2*u-1)*z)^(RHCnr-u+1),u=1..RHCnr): RHCa:= series(num/nom,z,nx+1); y:=coeff(RHCa,z,nx)-A[nx]; x:=RHC[nx+1]; A[nx]:=x-y; end do: FP1[RHCnr]:=sort(num,z, ascending); GenFun[RHCnr] :=FP1[RHCnr]/product((1-(2*m-1)*z)^(RHCnr-m+1),m=1..RHCnr);

Formula

G.f.: GF1(z;RHCnr) := FP1(z;RHCnr)/product((1-(2*m-1)*z)^(RHCnr+1-m),m=1..RHCnr)
Row sums (n) = (-1)^(1+(n+1)*(n+2)/2)*A098695(n).

A156927 FP3 polynomials related to the generating functions of the columns of the A156921 matrix.

Original entry on oeis.org

1, 1, 1, -6, 29, 31, -283, 245, 298, -286, -108, 119, -3106, 29469, -104585, -220481, 3601363, -15487305, 34949165, -39821950, 4356011, 46881744, -51274736, 9005908, 14663472, -5205168, -1456704, -20736
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

For the matrix of the FP1 polynomials see A156921. The coefficients in the columns of this matrix are the powers of z^m, m=0, 1, 2, ... . The columns are numbered 1, 2, 3... .
The GF3(z;m) generate the sequences of the z^m coefficients. The general structure of the GF3(z;m) is given below.
The FP3(z,m) in the numerator of the GF3(z;m) is a polynomial of a certain degree, let's say k3. The (k3+1) coefficients of this polynomial can be determined one by one by comparing the series expansion of the FP3(z,m) with the values of the powers of z^m in column (m+1). These values can be generated with the GF1 formulas, see A156921.
An appropriate name for the polynomials FP3(z;m) in the numerators of the GF(3;m) seems to be the flower polynomials of the third kind, the FP3, because the zero patterns of these polynomials look like flowers. The zero patterns of the FP3 and the FP4, see A156933, resemble each other closely and look like the zero patterns of the FP1 and FP2.
The sequence of the (k3+1) number of terms of the FP3(z;m) polynomials for m from 0 to 11 is 1, 2, 8, 17, 29, 45, 63, 84, 109, 137, 167, 200.

Examples

			The first few rows of the "triangle" of the FP3(z,m) coefficients are:
  [1]
  [1, 1]
  [-6, 29, 31, -283, 245, 298, -286, -108]
The first few FP3 polynomials are:
  FP3(z; m=0) = 1
  FP3(z; m=1) = (1+z)
  FP3(z; m=2) = (-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)
Some GF3(z;m) are:
  GF3(z;m=1) = z^2*(1+z)/((1-z)^4*(1-2*z))
  GF3(z;m=2) = z^2*(-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)/((1-z)^7*(1-2*z)^4*(1-3*z))
		

Crossrefs

For the first few GF3's see A156928, A156929, A156930, A156931.
Row sums A156932.
For the polynomials in the denominators of the GF3(z;m) see A157704.

Formula

G.f.: GF3(z;m):= z^p*FP3(z;m)/Product_{k=0..m} (1-(k+1)*z)^(1+3*k).

A156933 FP4 polynomials related to the o.g.f.s of the columns of the A156925 matrix.

Original entry on oeis.org

1, 1, 1, -11, 156, -627, 736, 591, -1116, -369, -6, 106, -2772, 76070, -1087552, 8632650, -40358780, 106452214, -99774996, -284430514, 1125952500, -1581820542, 737716032, 414532350, -357790500, -81870750, -1275750
Offset: 0

Views

Author

Johannes W. Meijer, Feb 20 2009

Keywords

Comments

For the matrix of the coefficients of the FP2 see A156925. The coefficients in the columns of this matrix are the powers of z^m, m=0, 1, 2, ... . The columns are numbered: 1, 2, 3, ... .
The GF4(z;m) generate the sequences of the z^m coefficients. The general structure of the GF4(z;m) is given below.
The FP4(z,m) in the numerator of the GF4(z;m) is a polynomial of a certain degree, let's say k4. The (k4+1) coefficients of this polynomial can be determined one by one by comparing the series expansion of the FP4(z,m) with the values of the powers of z^m in column (m+1). These values can be generated with the GF2 formulas, see A156925.
An appropriate name for the polynomials FP4(z;m) in the numerators of the GF4(z;m) seems to be the flower polynomials of the fourth kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP4 and the FP3, see A156927, resemble each other closely and look like the zero patterns of the FP1 and FP2.
The sequence of (k4+1) number of terms of the FP4(z;m) polynomials for m from 0 to 11 is 1, 2, 7, 17, 28, 44, 63, 83, 108, 136, 167, 199.

Examples

			The first few rows of the "triangle" of the FP4(z;m) coefficients are:
[1]
[1, 1]
[ -11, 156, -627, 736, 591, -1116, -369]
The first few FP4 polynomials are:
FP4(z; m=0) = 1
FP4(z; m=1) = (1+z)
FP4(z; m=2) = ( -11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6 )
Some GF4(z;m) are:
GF4(z;m=1) = z*(1+z)/((1-3*z)*(1-z)^4)
GF4(z;m=2) = z^2*(-11+156*z-627*z^2+736*z^3+591*z^4-1116*z^5-369*z^6)/((1-z)^7*(1-3*z)^4*(1-5*z))
		

Crossrefs

For the first few GF4's see A156934, A156935, A156936, A156937.
Row sums A156938.
For the polynomials in the denominators of the GF4(z;m) see A157705. - Johannes W. Meijer, Mar 07 2009

Formula

G.f.: GF4(z;m):= z^q*FP4(z;m) / Product_{k=0..m} (1-(2*m+1-(2*k))*z)^(3*k+1).

A160474 The Zeta triangle.

Original entry on oeis.org

-1, 51, -10, -10594, 2961, -210, 356487, -115940, 12642, -420, -101141295, 35804857, -4751890, 254562, -4620, 48350824787, -18071509911, 2689347661, -180909586, 5471466, -60060
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Comments

The coefficients of the ZS1 matrix are defined by ZS1[2*m-1,n] = (2^(2*m-1))*int(y^(2*m-1)/(sinh(y))^(2*n), y=0..infinity)/factorial(2*m-1) for m = 1, 2, 3, .. and n = 1, 2, 3, .. under the condition that n <= (m-1).
This definition leads to ZS1[2*m-1,n=1] = 2*zeta(2*m-1), for m = 2, 3, .. , and the recurrence relation ZS1[2*m-1,n]:=(1/(2*n-1))*((2/(n-1))*ZS1[2*m-3,n-1]-(2*n-2)*ZS1[2*m-1,n-1]). As usual zeta(m) is the Riemann zeta function. These two formulas enable us to determine the values of the ZS[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZS1[1,n=1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZS1 matrix, for m = 1, 2, 3, .., and n = 2, 3, 4 .. , can be generated with the GH(z;n) polynomials for which we found the following general expression GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n).
The CFN1(z;n) polynomials depend on the central factorial numbers A008955.
The ZETA(z;n) are the Zeta polynomials which lead to the Zeta triangle.
The zero patterns of the Zeta polynomials resemble a UFO. These patterns resemble those of the Eta, Beta and Lambda polynomials, see A160464, A160480 and A160487.
The first Maple algorithm generates the coefficients of the Zeta triangle. The second Maple algorithm generates the ZS1[2*m-1,n] coefficients for m= 0, -1, -2, .. .
The M(n) sequence, see the second Maple algorithm, leads to Gould's sequence A001316 and a sequence that resembles the denominators in Taylor series for tan(x), i.e., A156769(n).
Some of our results are conjectures based on numerical evidence.

Examples

			The first few rows of the triangle ZETA(n,m) with n=2,3,... and m=1,2,... are
  [ -1],
  [51, -10],
  [ -10594, 2961, -210],
  [356487, -115940, 12642, -420].
The first few ZETA(z;n) polynomials are
  ZETA(z;n=2) = -1,
  ZETA(z;n=3) = 51-10*z^2,
  ZETA(z;n=4) = -10594 + 2961*z^2 - 210*z^4.
The first few CFN1(z;n) polynomials are
  CFN1(z;n=2) = (z^2-1),
  CFN1(z;n=3) = (z^4 - 5*z^2 + 4),
  CFN1(z;n=4) = (z^6 - 14*z^4 + 49*z^2 - 36).
The first few generating functions GH(z;n) are
  GH(z;n=2) = (6*(z^2-1)*GH(z;n=1) + (-1)) / 9,
  GH(z;n=3) = (60*(z^4-5*z^2+4)*GH(z;n=1) + (51-10*z^2)) / 450,
  GH(z;n=4) = (1260*(z^6-14*z^4+49*z^2-36)*GH(z;n=1) + (-10594+2961*z^2-210*z^4))/99225.
		

Crossrefs

A160475 equals the first left hand column.
A160476 equals the first right hand column and 6*h(n).
A160477 equals the rows sums.
A160478 equals the p(n) sequence.
A160479 equals the ZL(n) sequence.
A001620 is the Euler-Mascheroni constant gamma.
The M(n-1) sequence equals A001316(n-1)/A156769(n) (n>=1).
The ZS1[ -1, n] and the Omega(n) coefficients lead to A002195 and A002196.
The CFN1(z, n) and the cfn1(n, k) lead to A008955.
Cf. The Eta, Beta and Lambda triangles A160464, A160480 and A160487.
Cf. A162446 (ZG1 matrix)

Programs

  • Maple
    nmax:=7; with(combinat): cfn1 := proc(n, k): sum((-1)^j*stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! end do: for n from 1 to nmax do Zc(n) := (Omega(n)*2^(2*n-1))*2/((2*n+1)*(n)) end do: c(1) := denom(Zc(1)): for n from 2 to nmax do c(n) := lcm(c(n-1)*(n)*(2*n+1)/2, denom(Zc(n))); p(n) := c(n-1) end do: y(1):=Zc(1): for n from 1 to nmax-1 do y(n+1) := Zc(n+1) - ((2*n+2)/(2*n+3))*y(n) end do: for n from 1 to nmax do b(n) := 4^(-n)*(2*n+1)*n*denom(Omega(n)) end do: for n from 1 to nmax-1 do c(n+1) := lcm(c(n)*(n+1)*(2*n+3)/2, b(n+1)) end do: for n from 1 to nmax do cm(n) := c(n)*(1/6)* 4^n/(2*n+1)! end do: for n from 1 to nmax-1 do ZL(n+2) := cm(n+1)/cm(n) end do: mmax := nmax: for n from 2 to nmax do ZETA(n, 1) := p(n)*y(n-1): ZETA(n, n) := 0 end do: for m from 2 to mmax do for n from m+1 to nmax do ZETA(n, m) := ZL(n)*(ZETA(n-1, m-1) - (n-1)^2* ZETA(n-1, m)) end do end do; seq(seq(ZETA(n,m), m=1..n-1), n=2..nmax);
    # End first program (program edited, Johannes W. Meijer, Sep 20 2012)
    nmax1 := 10; m := 1; ZS1row := 1-2*m; with(combinat): t1 := proc(n, k): sum((-1)^j * stirling1(n+1, n+1-k+j) * stirling1(n+1, n+1-k-j), j = -k..k) end proc: mmax1 := nmax1: for m1 from 1 to mmax1 do M(m1-1) := 2^(2*m1-2)/((2*m1-1)!) end do: for m1 from 1 to mmax1 do ZS1[ -2*m1+1, 1] := 2*(-bernoulli(2*m1)/(2*m1)) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do ZS1[-2*m1+1, n] := M(n-1)*sum((-1)^(k1+1)*t1(n-1, k1-1) * ZS1[2*k1-2*n-2*m1+1, 1], k1 = 1..n) od: od: seq(ZS1[1-2*m, n], n = 1..nmax1-m+1);
    # End second program (program edited, Johannes W. Meijer, Sep 20 2012)

Formula

We discovered a remarkable relation between the Zeta triangle coefficients ZETA(n,m) = ZL(n)*(ZETA(n-1,m-1)-(n-1)^2*ZETA(n-1,m)) for n = 3, 4, ... and m = 2, 3, .... See A160475 for ZETA(n,m=1) and furthermore ZETA(n,n) = 0 for n = 2, 3, ....
We observe that the ZL(n) = A160479(n) sequence also rules the Lambda triangle A160487.
The generating functions GH(z;n) of the coefficients in the matrix columns are defined by
GH(z;n) = sum(ZS1[2*m-1,n]*z^(2*m-2), m=1..infinity), with n = 1, 2, 3, .... This definition, and our choice of ZS1[1,1] = 2*gamma, leads to GH(z;n=1) = (-Psi(1-z)-Psi(1+z)) with Psi(z) the digamma-function. Furthermore we discovered that GH(z;n) = GH(z;n-1)*(2*z^2/((2*n-1)*(n-1))-(2*n-2)/(2*n-1))+2*ZS1[ -1,n-1]/((2*n-1)*(n-1)) for n = 2, 3 , ..., with ZS1[ -1,n] = 2^(2*n-1)*A002195(n)/A002196(n) for n = 1, 2, ....
We found the following general expression for the GH(z;n) polynomials, for n = 2, 3, ...:
GH(z;n) = (h(n)*CFN1(z;n)*GH(z;n=1) + ZETA(z;n))/p(n) with
h(n) = 6*A160476(n) and p(n) = A160478(n).

A160480 The Beta triangle read by rows.

Original entry on oeis.org

-1, -11, 1, -299, 36, -1, -15371, 2063, -85, 1, -1285371, 182474, -8948, 166, -1, -159158691, 23364725, -1265182, 29034, -287, 1, -27376820379, 4107797216, -237180483, 6171928, -77537, 456, -1
Offset: 2

Views

Author

Johannes W. Meijer, May 24 2009, Sep 19 2012

Keywords

Comments

The coefficients of the BS1 matrix are defined by BS1[2*m-1,n] = int(y^(2*m-1)/(cosh(y))^(2*n-1),y=0..infinity)/factorial(2*m-1) for m = 1, 2, ... and n = 1, 2, ... .
This definition leads to BS1[2*m-1,n=1] = 2*beta(2*m), for m = 1, 2, ..., and the recurrence relation BS1 [2*m-1,n] = (2*n-3)/(2*n-2)*(BS1[2*m-1,n-1] - BS1[2*m-3,n-1]/(2*n-3)^2) which we used to extend our definition of the BS1 matrix coefficients to m = 0, -1, -2, ... . We discovered that BS1[ -1,n] = 1 for n = 1, 2, ... . As usual beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity).
The coefficients in the columns of the BS1 matrix, for m = 1, 2, 3, ..., and n = 2, 3, 4, ..., can be generated with the GK(z;n) polynomials for which we found the following general expression GK(z;n) = ((-1)^(n+1)*CFN2(z;n)*GK(z;n=1) + BETA(z;n))/p(n).
The CFN2(z;n) polynomials depend on the central factorial numbers A008956.
The BETA(z;n) are the Beta polynomials which lead to the Beta triangle.
The zero patterns of the Beta polynomials resemble a UFO. These patterns resemble those of the Eta, Zeta and Lambda polynomials, see A160464, A160474 and A160487.
The first Maple algorithm generates the coefficients of the Beta triangle. The second Maple algorithm generates the BS1[2*m-1,n] coefficients for m = 0, -1, -2, -3, ... .
Some of our results are conjectures based on numerical evidence, see especially A160481.

Examples

			The first few rows of the triangle BETA(n,m) with n=2,3,... and m=1,2,... are
  [ -1],
  [ -11, 1],
  [ -299, 36, -1],
  [ -15371, 2063 -85, 1].
The first few BETA(z;n) polynomials are
  BETA(z;n=2) = -1,
  BETA(z;n=3) = -11 + z^2,
  BETA(z;n=4) = -299 + 36*z^2 - z^4.
The first few CFN1(z;n) polynomials are
  CFN2(z;n=2) = (z^2 - 1),
  CFN2(z;n=3) = (z^4 - 10*z^2 + 9),
  CFN2(z;n=4) = (z^6 - 35*z^4 + 259*z^2 - 225).
The first few generating functions GK(z;n) are
  GK(z;n=2) = ((-1)*(z^2-1)*GK(z,n=1) + (-1))/2,
  GK(z;n=3) = ((z^4 - 10*z^2 + 9)*GK(z,n=1)+ (-11 + z^2))/24,
  GK(z;n=4) = ((-1)*(z^6 - 35*z^4 + 259*z^2 - 225)*GK(z,n=1) + (-299 + 36*z^2 - z^4))/720.
		

Crossrefs

A160481 equals the rows sums.
A101269 and A160482 equal the first and second left hand columns.
A160483 and A160484 equal the second and third right hand columns.
A160485 and A160486 are two related triangles.
The CFN2(z, n) and the cfn2(n, k) lead to A008956.
Cf. the Eta, Zeta and Lambda triangles: A160464, A160474 and A160487.
Cf. A162443 (BG1 matrix).

Programs

  • Maple
    nmax := 8; mmax := nmax: for n from 1 to nmax do BETA(n, n) := 0 end do: m := 1: for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - (2*n-4)! od: for m from 2 to mmax do for n from m+1 to nmax do BETA(n, m) := (2*n-3)^2*BETA(n-1, m) - BETA(n-1, m-1) od: od: seq(seq(BETA(n, m), m=1..n-1), n= 2..nmax);
    # End first program
    nmax1 := 25; m := 1; BS1row := 1-2*m; for n from 0 to nmax1 do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: mmax1 := nmax1: for m1 from 1 to mmax1 do BS1[1-2*m1, 1] := euler(2*m1-2) od: for n from 2 to nmax1 do for m1 from 1 to mmax1-n+1 do BS1[1-2*m1, n] := (-1)^(n+1)*sum((-1)^(k1+1)*cfn2(n-1, k1-1) * BS1[2*k1-2*n-2*m1+1, 1], k1 =1..n)/(2*n-2)! od: od: seq(BS1[1-2*m, n], n=1..nmax1-m+1);
    # End second program
  • Mathematica
    BETA[2, 1] = -1;
    BETA[n_, 1] := BETA[n, 1] = (2*n - 3)^2*BETA[n - 1, 1] - (2*n - 4)!;
    BETA[n_ /; n > 2, m_ /; m > 0] /; 1 <= m <= n := BETA[n, m] = (2*n - 3)^2*BETA[n - 1, m] - BETA[n - 1, m - 1];
    BETA[, ] = 0;
    Table[BETA[n, m], {n, 2, 9}, {m, 1, n - 1}] // Flatten (* Jean-François Alcover, Dec 13 2017 *)

Formula

We discovered a relation between the Beta triangle coefficients BETA(n,m) = (2*n-3)^2* BETA(n-1,m)- BETA(n-1,m-1) for n = 3, 4, ... and m = 2, 3, ... with BETA(n,m=1) = (2*n-3)^2*BETA(n-1,m=1) - (2*n-4)! for n = 2, 3, ... and BETA(n,n) = 0 for n = 1, 2, ... .
The generating functions GK(z;n) of the coefficients in the matrix columns are defined by
GK(z;n) = sum(BS1[2*m-1,n]*z^(2*m-2), m=1..infinity) with n = 1, 2, ... .
This definition leads to GK(z;n=1) = 1/(z*cos(Pi*z/2))*int(sin(z*t)/sin(t),t=0..Pi/2).
Furthermore we discovered that GK(z;n) = GK(z;n-1)*((2*n-3)/(2*n-2)-z^2/((2*n-2)*(2*n-3)))-1/((2*n-2)*(2*n-3)) for n = 2, 3, ... .
We found the following general expression for the GK(z;n) polynomials, for n = 2, 3, ...,
GK(z;n) = ((-1)^(n+1)*CFN2(z;n)*GK(z;n=1) + BETA(z;n))/p(n) with p(n) = (2*n-2)!.
Showing 1-10 of 1007 results. Next