cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A179408 Values y for records of minima of positive distance d between a fifth power of a positive integer x and a square of an integer y such d = x^5 - y^2 (x != k^2 and y != k^5).

Original entry on oeis.org

181, 22434, 50354, 2759646, 3834168, 5562261, 10980023, 18329057, 142674503, 2093555387, 12135618855, 29588700403, 72673092233, 423129175811, 425213412449, 2855547523353, 482836315990072, 484925830443335
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values, see A179406.
For x values, see A179407.
Conjecture (from Artur Jasinski):
For any positive number x >= A179407(n), the distance d between fifth power of x and the square of any y (such that x != k^2 and y != k^5) can't be less than A179406(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)]; k = n^5 - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 96001}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy (* Artur Jasinski, Jul 13 2010 *)

Formula

A179407(n)^5-a(n)^2 = A179406(n).

A179784 Records for minima of the positive distance d between the seventh power of a positive integer x and the square of an integer y such that d = x^7 - y^2 (x <> k^2 and y <> k^7).

Original entry on oeis.org

7, 71, 95, 448, 1756, 2215, 3983, 6271, 15231, 26775, 26870, 57475, 102703, 221916, 257963, 9053750, 9297464, 9321703, 27188154, 48787589, 62396287, 83146412, 152244535, 44475611670, 74378479183, 179884971502, 929051699593
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^7.
For x values see A179785.
For y values see A179786.
Conjecture (Artur Jasinski): For any positive number x >= A179785(n), the distance d between the seventh power of x and the square of any y (such that x <> k^2 and y <> k^7) can't be less than A179784(n).

Crossrefs

Programs

  • Mathematica
    d = 7; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179785 Values x for records of minima of the positive distance d between the seventh power of a positive integer x and the square of an integer y such that d = x^7 - y^2 (x <> k^2 and y <> k^7).

Original entry on oeis.org

2, 3, 6, 8, 10, 14, 18, 20, 28, 30, 39, 55, 59, 88, 239, 255, 257, 374, 387, 477, 1136, 1221, 9104, 10959, 35962, 43783, 96569, 148544, 183163, 194933, 313592, 842163, 1254392, 1468637, 1506412, 2377393, 2407523, 4636475, 5756417, 6615968
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^7.
For d values see A179784.
For y values see A179786.
Conjecture (Artur Jasinski): For any positive number x >= A179785(n), the distance d between the seventh power of x and the square of any y (such that x <> k^2 and y <> k^7) can't be less than A179784(n).

Crossrefs

Programs

  • Mathematica
    d = 7; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx

A179786 Values y for records of the minima of the positive distance d between the seventh power of a positive integer x and the square of an integer y such that d = x^7 - y^2 (x <> k^2 and y <> k^7).

Original entry on oeis.org

11, 46, 529, 1448, 3162, 10267, 24743, 35777, 116159, 147885, 370447, 1233870, 1577546, 6392774, 211053546, 264783325, 272123427, 1011697339, 1140219273, 2370360092, 49411058753, 63606986977, 71996746561757, 137783827309893
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^7.
For d values see A179784.
For x values see A179785.
Conjecture (Artur Jasinski): For any positive number x >= A179785(n), the distance d between the seventh power of x and the square of any y (such that x <> k^2 and y <> k^7) can't be less than A179784(n).

Crossrefs

Programs

  • Mathematica
    d = 7; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy

A179790 Records for minima of the positive distance d between the ninth power of a positive integer x and the square of an integer y such that d = x^9 - y^2 (x <> k^2 and y <> k^9).

Original entry on oeis.org

28, 83, 1516, 3420, 5503, 30889, 75228, 776563, 2428283, 3035356, 29901479, 68334642, 113284785, 776887258, 1719856432, 3353407292, 19232010711, 27678166236, 29160146546, 305337557432, 95950163566107, 114852386371373
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^9.
For x values see A179791.
For y values see A179792.
Conjecture (Artur Jasinski): For any positive number x >= A179791(n), the distance d between the ninth power of x and the square of any y (such that x <> k^2 and y <> k^9) can't be less than A179790(n).

Crossrefs

Programs

  • Mathematica
    d = 9; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179791 Values x for records of the minima of the positive distance d between the ninth power of a positive integer x and the square of an integer y such that d = x^9 - y^2 (x <> k^2 and y <> k^9).

Original entry on oeis.org

2, 3, 5, 6, 8, 13, 22, 23, 27, 62, 78, 147, 181, 203, 233, 468, 892, 1110, 1827, 3657, 3723, 10637, 11145, 11478, 12275, 16764, 19151, 22719, 23580, 24974, 30163, 36885, 41759, 41948, 44427, 66443, 86167, 96658, 115992, 222962, 248461, 248588, 384573
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^9.
For d values see A179790.
For y values see A179792.
Conjecture (Artur Jasinski): For any positive number x >= A179791(n), the distance d between the ninth power of x and the square of any y (such that x <> k^2 and y <> k^9) can't be less than A179790(n).

Crossrefs

Programs

  • Mathematica
    d = 9; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx

A179792 Values y for records of the minima of the positive distance d between the ninth power of a positive integer x and the square of an integer y such that d = x^9 - y^2 (x <> k^2 and y <> k^9).

Original entry on oeis.org

22, 140, 1397, 3174, 11585, 102978, 1098758, 1342070, 2761448, 116348986, 326908123, 5661454305, 14439547606, 24195364585, 44988513611, 1037782490126, 18907836782131, 50577039498042, 476237361126871, 10815891488601655
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^9.
For d values see A179790.
For x values see A179791.
Conjecture (Artur Jasinski): For any positive number x >= A179791(n), the distance d between the ninth power of x and the square of any y (such that x <> k^2 and y <> k^9) can't be less than A179790(n).

Crossrefs

Programs

  • Mathematica
    d = 9; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy

A179793 Records of minima of the positive distance d between the eleventh power of a positive integer x and the square of an integer y such that d = x^11 - y^2 (x <> k^2 and y <> k^11).

Original entry on oeis.org

23, 747, 8847, 12654, 166831, 484471, 573055, 1248668, 1602775, 8764352, 72820023, 94338007, 143404871, 155195023, 262310000, 1529935249, 4884962400, 19571071932, 146228748359, 318603821009, 635586109888, 1305633968055
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^11.
For x values see A179794.
For x values see A179795.
Conjecture (Artur Jasinski): For any positive number x >= A179794(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^11) can't be less than A179793(n).

Crossrefs

Programs

  • Mathematica
    d = 11; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

A179794 Values x for records of the minima of the positive distance d between the eleventh power of a positive integer x and the square of an integer y such that d = x^11 - y^2 (x <> k^2 and y <> k^11).

Original entry on oeis.org

2, 3, 6, 7, 8, 10, 14, 18, 20, 26, 28, 32, 38, 52, 60, 77, 145, 168, 222, 237, 268, 279, 286, 359, 367, 390, 536, 569, 622, 872, 1085, 1349, 1462, 1760, 1932, 2423, 2801, 5559, 5925, 7052, 8383, 8752, 10075, 11917, 15712, 17420, 17598, 23712, 26026, 28095
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^11.
For x values see A179794.
For x values see A179795.
Conjecture (Artur Jasinski): For any positive number x >= A179794(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^11) can't be less than A179793(n).

Crossrefs

Programs

  • Mathematica
    d = 11; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; xx

A179795 Values y for records of the minima of the positive distance d between the eleventh power of a positive integer x and the square of an integer y such that d = x^11 - y^2 (x <> k^2 and y <> k^11).

Original entry on oeis.org

45, 420, 19047, 44467, 92681, 316227, 2012353, 8016758, 14310835, 60583368, 91068707, 189812531, 488438379, 2741690265, 6023263700, 23751934582, 771834189385, 1734606819630, 8034176335637, 11511075516802, 22632960587688
Offset: 1

Views

Author

Artur Jasinski, Jul 27 2010

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^11.
For x values see A179794.
For x values see A179795.
Conjecture (Artur Jasinski):
For any positive number x >= A179794(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^11) can't be less than A179793(n).

Crossrefs

Programs

  • Mathematica
    d = 11; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
Showing 1-10 of 23 results. Next