cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Artur Jasinski

Artur Jasinski's wiki page.

Artur Jasinski has authored 2059 sequences. Here are the ten most recent ones:

A387303 Decimal expansion of Sum_{n>=1} (-1)^(n+1) P(4*n)/(4*n), where P(x) is the prime zeta function.

Original entry on oeis.org

0, 1, 8, 7, 6, 0, 2, 0, 1, 6, 8, 9, 9, 8, 0, 6, 6, 8, 6, 3, 1, 9, 1, 1, 9, 7, 7, 0, 4, 4, 9, 1, 4, 5, 5, 6, 8, 0, 5, 2, 4, 9, 3, 4, 7, 5, 0, 2, 9, 7, 0, 5, 1, 9, 0, 1, 3, 0, 6, 0, 0, 2, 2, 2, 9, 0, 1, 7, 5, 5, 1, 6, 0, 3, 4, 7, 5, 7, 9, 2, 0, 0, 3, 9, 2, 2, 8, 7, 6, 2, 5, 9, 8, 2, 0, 6, 0, 9, 8, 9, 4, 3, 2, 3, 9
Offset: 0

Author

Artur Jasinski, Aug 25 2025

Keywords

Examples

			0.0187602016899806686319119770449145568...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[105^(1/4)/Pi], 10, 105, -1][[1]]

Formula

Equals log(105^(1/4)/Pi).
For m > 1, Sum_{k>=1} (-1)^(k+1) * primezeta(m*k)/k = log(zeta(m)/zeta(2*m)). - Vaclav Kotesovec, Aug 25 2025

A387300 Decimal expansion of Sum_{n>=1} (-1)^(n+1) P(2*n)/(2*n), where P(x) is the prime zeta function.

Original entry on oeis.org

2, 0, 9, 2, 9, 5, 2, 1, 4, 7, 0, 1, 7, 0, 4, 8, 5, 8, 8, 5, 4, 5, 7, 4, 9, 3, 3, 7, 2, 1, 2, 9, 7, 9, 6, 0, 4, 3, 9, 2, 5, 1, 1, 4, 3, 1, 3, 0, 3, 2, 2, 0, 1, 5, 3, 1, 0, 0, 4, 8, 0, 4, 1, 0, 8, 3, 6, 9, 8, 8, 7, 0, 5, 7, 8, 3, 0, 7, 2, 8, 5, 9, 6, 8, 2, 5, 1, 5, 4, 6, 1, 7, 7, 9, 6, 6, 1, 4, 2, 0, 9, 1, 9, 5, 8
Offset: 0

Author

Artur Jasinski, Aug 25 2025

Keywords

Examples

			0.20929521470170485885457493372...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Sqrt[15]/Pi], 10, 105][[1]]

Formula

Equals log(sqrt(15)/Pi).
For m > 1, Sum_{k>=1} (-1)^(k+1) * primezeta(m*k)/k = log(zeta(m)/zeta(2*m)). - Vaclav Kotesovec, Aug 25 2025

A387289 Decimal expansion of Sum_{n>=1} (-1)^(n+1) P(3*n)/(3*n), where P(x) is the prime zeta function.

Original entry on oeis.org

0, 5, 5, 6, 1, 3, 2, 6, 2, 5, 9, 6, 2, 7, 7, 7, 1, 0, 1, 7, 8, 7, 4, 7, 4, 6, 3, 4, 5, 3, 0, 5, 1, 5, 2, 9, 0, 1, 8, 0, 3, 7, 2, 6, 6, 1, 0, 0, 2, 8, 8, 4, 3, 8, 7, 4, 6, 5, 0, 4, 0, 1, 0, 3, 6, 2, 5, 6, 6, 5, 4, 5, 0, 3, 2, 6, 4, 2, 2, 6, 7, 3, 7, 0, 8, 3, 9, 0, 9, 7, 7, 2, 4, 7, 4, 5, 8, 2, 7, 3, 5, 8, 9, 3, 3, 5
Offset: 0

Author

Artur Jasinski, Aug 25 2025

Keywords

Examples

			0.055613262596277710178747463453...
		

Crossrefs

Cf. A387293.

Programs

  • Mathematica
    RealDigits[Log[Zeta[3]/Zeta[6]]/3, 10, 105, -1][[1]]

Formula

Equals log(zeta(3)/zeta(6))/3.
Equals log(3*(35*zeta(3))^(1/3)/Pi^2).
Sum_{p prime} Sum_{n>=1} (-1)^(n+1)/p^(3*n)/(3*n) = Sum_{p prime} log((1+1/p^3))/3 = log(Product_{p prime} (1+1/p^3))/3 = log(zeta(3)/zeta(6))/3. - Amiram Eldar, Aug 25 2025

A387293 Decimal expansion of Sum_{k>=2} P(k)/zeta(k), where P(k) is the prime zeta function.

Original entry on oeis.org

5, 5, 8, 9, 5, 5, 4, 3, 4, 6, 4, 4, 5, 0, 3, 8, 9, 4, 9, 8, 9, 0, 7, 3, 1, 2, 2, 0, 5, 3, 8, 4, 3, 3, 2, 0, 7, 8, 9, 6, 0, 3, 4, 0, 7, 1, 2, 2, 7, 0, 5, 9, 9, 8, 5, 1, 5, 8, 9, 1, 6, 5, 8, 8, 7, 5, 5, 5, 4, 5, 2, 9, 5, 1, 3, 1, 4, 9, 5, 8, 4, 6, 1, 0, 3, 5, 7, 2, 8, 0, 7, 0, 7, 4, 9, 8, 7, 2, 7, 4, 6, 6, 9, 8, 5
Offset: 0

Author

Artur Jasinski, Aug 25 2025

Keywords

Examples

			0.5589554346445038949890731220538433207896034...
		

Crossrefs

Cf. A387289.

A387065 Decimal expansion of the value of the Riemann zeta function at 2nd extremum (negated).

Original entry on oeis.org

0, 0, 3, 9, 8, 6, 4, 4, 1, 6, 6, 3, 6, 7, 0, 7, 5, 0, 4, 3, 1, 7, 1, 0, 4, 0, 5, 3, 5, 2, 8, 2, 0, 4, 2, 9, 4, 2, 4, 1, 7, 1, 5, 4, 8, 4, 3, 4, 1, 7, 2, 8, 9, 6, 5, 6, 5, 6, 0, 6, 8, 0, 2, 8, 3, 1, 0, 6, 4, 3, 1, 3, 4, 5, 1, 9, 6, 2, 6, 7, 7, 9, 6, 0, 1, 9, 4, 1, 3, 5, 0, 0, 6, 7, 0, 3, 9, 9, 0, 7, 6, 8, 2, 8, 1, 4, 5
Offset: 0

Author

Artur Jasinski, Aug 15 2025

Keywords

Examples

			-0.00398644166367075043171...
		

Crossrefs

Programs

  • Mathematica
    kk = x /. FindRoot[Zeta'[x] == 0, {x, -5}, WorkingPrecision -> 110]; dd =
     RealDigits[Zeta[kk], 10, 105][[1]]; Flatten[Prepend[dd, {0, 0}]]

Formula

Equals zeta(-A387052).

A387052 Decimal expansion of -x, where x is the abscissa of the second local extremum of the Riemann zeta function on the negative real axis.

Original entry on oeis.org

4, 9, 3, 6, 7, 6, 2, 1, 0, 8, 5, 9, 4, 9, 4, 7, 8, 6, 8, 8, 7, 9, 3, 5, 8, 2, 4, 9, 8, 4, 2, 7, 1, 5, 3, 7, 3, 6, 6, 1, 0, 0, 9, 2, 0, 3, 5, 0, 5, 7, 5, 5, 6, 2, 2, 2, 9, 5, 6, 3, 3, 3, 4, 2, 0, 4, 4, 9, 4, 2, 0, 2, 9, 1, 1, 9, 8, 2, 4, 3, 7, 4, 2, 0, 3, 7, 0, 2, 2, 2, 6, 9, 6, 6, 7, 9, 3, 7, 8, 8, 6, 9, 8, 9, 9
Offset: 1

Author

Artur Jasinski, Aug 15 2025

Keywords

Comments

The Riemann zeta function has zeros for x = -2*n for n >= 1, which means that between -2*(n+1) and -2*n the function has an extremum for each positive integer n.
For the value of zeta(-x_2) see A387065.
It is an open question whether the fractional part of x_n tends to 1 or some unknown constant c < 1 as n tends to infinity.

Crossrefs

Programs

  • Mathematica
    kk = x /. FindRoot[Zeta'[x] == 0, {x, -5}, WorkingPrecision -> 110];
    RealDigits[kk, 10, 105][[1]]
  • PARI
    solve(x=-4.95, -4.9, zeta'(x))

A383903 Decimal expansion of Meissel Prime theta function at x = 2 : Sum_{p prime} 1/exp(2*p).

Original entry on oeis.org

0, 2, 0, 8, 4, 0, 6, 2, 2, 8, 0, 7, 9, 3, 9, 7, 7, 0, 7, 6, 1, 4, 2, 8, 7, 9, 5, 4, 3, 4, 7, 6, 4, 5, 3, 5, 8, 8, 8, 7, 2, 8, 1, 6, 0, 4, 6, 1, 4, 5, 6, 8, 0, 0, 5, 8, 1, 8, 4, 9, 2, 6, 5, 4, 3, 8, 2, 4, 6, 1, 9, 8, 8, 8, 8, 3, 7, 8, 1, 5, 7, 3, 2, 2, 4, 9, 2, 0, 9, 3, 4, 7, 2, 3, 5, 9, 4, 8, 9, 7, 5, 7, 2, 4, 1, 4, 8, 7, 4, 2, 1
Offset: 0

Author

Artur Jasinski, Aug 07 2025

Keywords

Comments

Meissel Prime theta function is defined : Sum_{p prime} 1/exp(x*p).

Examples

			0.02084062280793977076142879543476453588872816...
		

References

  • Ernst Meissel, Bericht über die Provinzial-Gewerbe-Schule zu Iserlohn. Notiz No. 38 pp.1-17 (manuscript).

Crossrefs

Programs

  • Maple
    evalf[140](sum(1/exp(2*ithprime(i)), i=1..infinity));  # Alois P. Heinz, Aug 07 2025
  • Mathematica
    sum = 0; Do[sum = sum + N[1/E^(2 Prime[n]), 110], {n, 1, 56}];
    RealDigits[sum, 10, 105][[1]]
  • PARI
    sumpos(k = 1, exp(-2*prime(k))) \\ Amiram Eldar, Aug 08 2025

A383901 Decimal expansion of Meissel Prime theta function at 1 : Sum_{p prime} 1/exp(p).

Original entry on oeis.org

1, 9, 2, 7, 9, 1, 1, 8, 9, 7, 0, 4, 3, 9, 5, 1, 4, 5, 0, 4, 2, 1, 5, 0, 1, 2, 5, 4, 1, 8, 5, 5, 6, 3, 7, 6, 7, 9, 2, 3, 6, 5, 0, 8, 8, 9, 4, 4, 3, 0, 3, 6, 1, 3, 3, 2, 7, 4, 5, 3, 1, 5, 8, 9, 8, 0, 9, 2, 1, 0, 4, 3, 2, 3, 5, 2, 5, 0, 0, 7, 0, 5, 1, 5, 2, 5, 4, 4, 6, 4, 7, 4, 1, 5, 2, 3, 0, 6, 9, 5, 6, 4, 8, 1, 0, 5, 0, 4, 5, 9
Offset: 0

Author

Artur Jasinski, Aug 07 2025

Keywords

Comments

Meissel Prime theta function is defined : Sum_{p prime} 1/exp(x*p).

Examples

			0.192791189704395145042150125418556376792365...
		

References

  • Ernst Meissel, Bericht über die Provinzial-Gewerbe-Schule zu Iserlohn. Notiz No. 38 pp. 1-17 (manuscript).

Crossrefs

Programs

  • Maple
    evalf[140](sum(1/exp(ithprime(i)), i=1..infinity));  # Alois P. Heinz, Aug 07 2025
  • Mathematica
    sum = 0; Do[sum = sum + N[1/E^(Prime[n]), 110], {n, 1, 56}];
    RealDigits[sum, 10, 105][[1]]
  • PARI
    sumpos(k = 1, exp(-prime(k))) \\ Amiram Eldar, Aug 08 2025

A386744 Decimal expansion of the Product {n>=2, Omega(n)=2} 1/(1 - 1/n^2).

Original entry on oeis.org

1, 1, 5, 4, 1, 3, 5, 4, 2, 9, 1, 3, 1, 1, 9, 2, 2, 1, 2, 7, 5, 3, 1, 3, 6, 4, 7, 6, 0, 8, 2, 6, 5, 3, 0, 6, 2, 0, 2, 1, 3, 7, 7, 0, 1, 9, 7, 6, 9, 1, 6, 6, 3, 1, 1, 6, 0, 1
Offset: 1

Author

Artur Jasinski, Aug 01 2025

Keywords

Examples

			1.154135429131192212753136476082653062021377019769166311601...
		

Crossrefs

Cf. A001222 (Omega), A001358.

A385423 Decimal expansion of the absolute value of zeta(1/5).

Original entry on oeis.org

7, 3, 3, 9, 2, 0, 9, 2, 4, 8, 9, 6, 3, 4, 0, 5, 9, 2, 2, 4, 3, 8, 0, 9, 6, 1, 3, 7, 5, 5, 1, 3, 6, 8, 6, 6, 6, 4, 9, 1, 2, 8, 6, 9, 3, 8, 3, 2, 3, 1, 5, 3, 3, 6, 4, 4, 3, 9, 2, 6, 2, 4, 0, 6, 0, 9, 1, 6, 4, 9, 7, 8, 7, 4, 4, 6, 4, 1, 0, 8, 2, 5, 9, 3, 8, 5, 7, 5, 4, 9, 4, 3, 7, 9, 8, 5, 7, 3, 7, 6, 2, 6, 9, 7, 9
Offset: 0

Author

Artur Jasinski, Jul 26 2025

Keywords

Examples

			0.7339209248963405922438096137551368666491286938...
		

Crossrefs

Programs

  • Maple
    evalf(abs(Zeta(1/5)), 120);  # Alois P. Heinz, Jul 26 2025
  • Mathematica
    RealDigits[-Zeta[1/5], 10, 105][[1]]

Formula

Equals (1/(2^(4/5)-1))*Sum_{k>=1} (-1)^(k+1)/k^(1/5).