A383903 Decimal expansion of Meissel Prime theta function at x = 2 : Sum_{p prime} 1/exp(2*p).
0, 2, 0, 8, 4, 0, 6, 2, 2, 8, 0, 7, 9, 3, 9, 7, 7, 0, 7, 6, 1, 4, 2, 8, 7, 9, 5, 4, 3, 4, 7, 6, 4, 5, 3, 5, 8, 8, 8, 7, 2, 8, 1, 6, 0, 4, 6, 1, 4, 5, 6, 8, 0, 0, 5, 8, 1, 8, 4, 9, 2, 6, 5, 4, 3, 8, 2, 4, 6, 1, 9, 8, 8, 8, 8, 3, 7, 8, 1, 5, 7, 3, 2, 2, 4, 9, 2, 0, 9, 3, 4, 7, 2, 3, 5, 9, 4, 8, 9, 7, 5, 7, 2, 4, 1, 4, 8, 7, 4, 2, 1
Offset: 0
Examples
0.02084062280793977076142879543476453588872816...
References
- Ernst Meissel, Bericht über die Provinzial-Gewerbe-Schule zu Iserlohn. Notiz No. 38 pp.1-17 (manuscript).
Links
- Peter Lindqvist and Jaak Peetre, On a number theoretic sum considered by Meissel : a historical observation, Nieuw Archief voor Wiskunde (Serie 4) 1997 Vol. 15 (3) pp. 175-179 (see reprint p. 3).
Programs
-
Maple
evalf[140](sum(1/exp(2*ithprime(i)), i=1..infinity)); # Alois P. Heinz, Aug 07 2025
-
Mathematica
sum = 0; Do[sum = sum + N[1/E^(2 Prime[n]), 110], {n, 1, 56}]; RealDigits[sum, 10, 105][[1]]
-
PARI
sumpos(k = 1, exp(-2*prime(k))) \\ Amiram Eldar, Aug 08 2025
Comments