A156927
FP3 polynomials related to the generating functions of the columns of the A156921 matrix.
Original entry on oeis.org
1, 1, 1, -6, 29, 31, -283, 245, 298, -286, -108, 119, -3106, 29469, -104585, -220481, 3601363, -15487305, 34949165, -39821950, 4356011, 46881744, -51274736, 9005908, 14663472, -5205168, -1456704, -20736
Offset: 0
The first few rows of the "triangle" of the FP3(z,m) coefficients are:
[1]
[1, 1]
[-6, 29, 31, -283, 245, 298, -286, -108]
The first few FP3 polynomials are:
FP3(z; m=0) = 1
FP3(z; m=1) = (1+z)
FP3(z; m=2) = (-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)
Some GF3(z;m) are:
GF3(z;m=1) = z^2*(1+z)/((1-z)^4*(1-2*z))
GF3(z;m=2) = z^2*(-6+29*z+31*z^2-283*z^3+245*z^4+298*z^5-286*z^6-108*z^7)/((1-z)^7*(1-2*z)^4*(1-3*z))
For the polynomials in the denominators of the GF3(z;m) see
A157704.
A156928
G.f. of the z^1 coefficients of the FP1 in the second column of the A156921 matrix.
Original entry on oeis.org
1, 7, 28, 86, 227, 545, 1230, 2664, 5613, 11611, 23728, 48106, 97031, 195077, 391394, 784284, 1570353, 3142815, 6288100, 12579070, 25161451, 50326697, 100657718, 201320336, 402646197, 805298595
Offset: 2
-
List([2..40], n-> (9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6); # G. C. Greubel, Jul 08 2019
-
[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6: n in [2..40]]; // G. C. Greubel, Jul 08 2019
-
Table[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6, {n, 2, 40}] (* Michael De Vlieger, Sep 23 2017 *)
-
vector(40, n, n++; (9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6) \\ G. C. Greubel, Jul 08 2019
-
[(9*2^(n+2) -(2*n^3+9*n^2+25*n+36))/6 for n in (2..40)] # G. C. Greubel, Jul 08 2019
A157702
G.f.s of the z^p coefficients of the polynomials in the GF1 denominators of A156921.
Original entry on oeis.org
1, 1, 1, 7, 26, 7, 3, 166, 951, 951, 166, 3, 263, 8999, 59637, 108602, 59637, 8999, 263, 174, 33124, 848555, 6062651, 15477896, 15477896, 6062651, 848555, 33124, 174, 45, 66963, 5856626, 122966782, 920090513
Offset: 0
Some PDGF1 (z;n) are:
PDGF1(z;n=3) = (1-5*z)*(1-3*z)^2*(1-z)^3
PDGF1(z;n=4) = ((1-7*z)*(1-5*z)^2*(1-3*z)^3*(1-z)^4)
The first few GFKT1's are:
GFKT1(z;p=0) = 1/(1-z)
GFKT1(z;p=1) = -z*(1+z)/(1-z)^4
GFKT1(z;p=2) = z^2*(7+26*z+7*z^2)/(1-z)^7
Some KT1(z;p) polynomials are:
KT1(z;p=2) = 7+26*z+7*z^2
KT1(z;p=3) = 3+166*z+951*z^2+951*z^3+166*z^4+3*z^5
KT1(z;p=4) = 263+8999*z+59637*z^2+108602*z^3+59637*z^4+8999*z^5+263*z^6
See
A000330 for the z^1 coefficients and
A157706 for the z^2 coefficients.
-
p:=2; fn:=sum((-1)^(n1+1)*binomial(3*p+1,n1) *a(n-n1),n1=1..3*p+1): fk:=rsolve(a(n) = fn, a(k)): for n2 from 0 to 3*p+1 do fz(n2):=product((1-(2*m-1)*z)^(n2+1-m),m=1..n2); a(n2):= coeff(fz(n2),z,p); end do: b:=n-> a(n): seq(b(n), n=0..3*p+1); a(n)=fn; a(k)=sort(simplify(fk)); GFKT1(p):=(sum(fk*z^k,k=0..infinity)); q1:=ldegree((numer(GFKT1(p)))): KT1(p):=sort((-1)^p*simplify((GFKT1(p))*(1-z)^(3*p+1)/z^q1),z, ascending);
A156929
G.f. of the z^2 coefficients of the FP1 in the third column of the A156921 matrix.
Original entry on oeis.org
-6, -79, -515, -2255, -7321, -17280, -20052, 73530, 683280, 3482667, 14574887, 55023247, 194872885, 661036370, 2174736558, 6996176016, 22133771190, 69145507605, 213941135265, 657095902685
Offset: 2
A156930
G.f. of the z^3 coefficients of the FP1 in the fourth column of the A156921 matrix.
Original entry on oeis.org
119, 1654, 5784, -57421, -974120, -8191112, -51264392, -266367722, -1204269647, -4832097594, -17187443308, -52433219783, -120342975558, -58288009528, 1603731045044, 13940518848356
Offset: 3
A156931
G.f. of the z^4 coefficients of the FP1 in the fifth column of the A156921 matrix.
Original entry on oeis.org
126, 8689, 300930, 5663483, 69028169, 613038531, 4234224501, 23275739871, 98332765273, 250304681662, -554375755759, -13379311589392, -119762221369238, -826135093245122, -4949174987335110
Offset: 3
A157706
The z^2 coefficients of the polynomials in the GF1 denominators of A156921.
Original entry on oeis.org
7, 75, 385, 1365, 3850, 9282, 19950, 39270, 72105, 125125, 207207, 329875, 507780, 759220, 1106700, 1577532, 2204475, 3026415, 4089085, 5445825, 7158382, 9297750, 11945050, 15192450, 19144125, 23917257
Offset: 2
-
nmax:=27; for n from 0 to nmax do fz(n):= product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=2..nmax);
A000330
Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.
Original entry on oeis.org
0, 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
Offset: 0
G.f. = x + 5*x^2 + 14*x^3 + 30*x^4 + 55*x^5 + 91*x^6 + 140*x^7 + 204*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover Publications, NY, 1964, p. 194.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 215,223.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 122, see #19 (3(1)), I(n); p. 155.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 47-49.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.165).
- J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 310, pp. 46-196, Ellipses, Paris, 2004.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, p. 293.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 293.
- M. Holt, Math puzzles and games, Walker Publishing Company, 1977, p. 2 and p. 89.
- Simon Singh, The Simpsons and Their Mathematical Secrets. London: Bloomsbury Publishing PLC (2013): 188.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 126.
- Felix Fröhlich, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- L. Ancora, Quadrature of the Parabola with the Square Pyramidal Number, Mondadori Education, Archimede 66, No. 3, 139-144 (2014).
- Jack Anderson, Amy Woodall, and Alexandru Zaharescu, Arithmetic Polygons and Sums of Consecutive Squares, arXiv:2411.08398 [math.NT], 2024.
- Ben Babcock and Adam Van Tuyl, Revisiting the spreading and covering numbers, arXiv preprint arXiv:1109.5847 [math.AC], 2011.
- Joshua L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- Joshua L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Michael A. Bennett, Lucas' square pyramid problem revisited, Acta Arithmetica 105 (2002), 341-347.
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Fritz Beukers and Jaap Top, On oranges and integral points on certain plane cubic curves, Nieuw Arch. Wiskd., IV (1988), Ser. 6, No. 3, 203-210.
- Henry Bottomley, Illustration of initial terms.
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, p=1 in first displayed equation page 4.
- Bikash Chakraborty, Proof Without Words: Sums of Powers of Natural numbers, arXiv:2012.11539 [math.HO], 2020.
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Alexander Diaz-Lopez, Pamela E. Harris, Erik Insko, and Darleen Perez-Lavin, Peaks Sets of Classical Coxeter Groups, arXiv preprint arXiv:1505.04479 [math.GR], 2015.
- Anji Dong, Katerina Saettone, Kendra Song, and Alexandru Zaharescu, Cannonball Polygons with Multiplicities, arXiv:2507.18057 [math.NT], 2025. See p. 1.
- Michael Dougherty, Christopher French, Benjamin Saderholm, and Wenyang Qian, Hankel Transforms of Linear Combinations of Catalan Numbers, Journal of Integer Sequences, Vol. 14 (2011), Article 11.5.1.
- David Galvin and Courtney Sharpe, Independent set sequence of linear hyperpaths, arXiv:2409.15555 [math.CO], 2024. See p. 7.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- T. Aaron Gulliver, Sequences from hexagonal pyramid of integers, International Mathematical Forum, Vol. 6, 2011, no. 17, p. 821-827.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- R. Jovanovic, First 2500 Pyramidal numbers.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 9, 13-15, 24.
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- Toufik Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
- Cleve Moler, LINPACK subroutine sgefa.f, University of New Mexico, Argonne National Lab, 1978.
- Michael Penn, Counting on a chessboard., YouTube video, 2021.
- Claudio de J. Pita Ruiz V., Some Number Arrays Related to Pascal and Lucas Triangles, J. Int. Seq. 16 (2013) #13.5.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Torsten Sillke, Square Counting.
- Think Twice, Sum of n squares | explained visually |, video (2017).
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- G. N. Watson, The problem of the square pyramid, Messenger of Mathematics 48 (1918), pp. 1-22.
- Eric Weisstein's World of Mathematics, Faulhaber's Formula.
- Eric Weisstein's World of Mathematics, Square Pyramidal Number.
- Eric Weisstein's World of Mathematics, Square Tiling.
- Eric Weisstein's World of Mathematics, Power Sum.
- Wikipedia, Faulhaber's formula.
- G. Xiao, Sigma Server, Operate on"n^2".
- Index entries for "core" sequences.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for two-way infinite sequences.
Cf.
A000217,
A000292,
A000537,
A005408,
A006003,
A006331,
A033994,
A033999,
A046092,
A050409,
A050446,
A050447,
A060493,
A100157,
A132124,
A132112,
A156921,
A157702,
A258708,
A351105,
A351830.
Sums of 2 consecutive terms give
A005900.
Cf.
A253903 (characteristic function).
Cf.
A034705 (differences of any two terms).
-
List([0..30], n-> n*(n+1)*(2*n+1)/6); # G. C. Greubel, Dec 31 2019
-
a000330 n = n * (n + 1) * (2 * n + 1) `div` 6
a000330_list = scanl1 (+) a000290_list
-- Reinhard Zumkeller, Nov 11 2012, Feb 03 2012
-
[n*(n+1)*(2*n+1)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 28 2014
-
[0] cat [((2*n+3)*Binomial(n+2,2))/3: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
A000330 := n -> n*(n+1)*(2*n+1)/6;
a := n->(1/6)*n*(n+1)*(2*n+1): seq(a(n),n=0..53); # Emeric Deutsch
with(combstruct): ZL:=[st, {st=Prod(left, right), left=Set(U, card=r), right=Set(U, card=r), U=Sequence(Z, card>=1)}, unlabeled]: subs(r=1, stack): seq(count(subs(r=2, ZL), size=m*2), m=1..45) ; # Zerinvary Lajos, Jan 02 2008
nmax := 44; for n from 0 to nmax do fz(n) := product( (1-(2*m-1)*z)^(n+1-m) , m=1..n); c(n) := abs(coeff(fz(n),z,1)); end do: a := n-> c(n): seq(a(n), n=0..nmax); # Johannes W. Meijer, Mar 07 2009
-
Table[Binomial[w+2, 3] + Binomial[w+1, 3], {w, 0, 30}]
CoefficientList[Series[x(1+x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
Accumulate[Range[0,50]^2] (* Harvey P. Dale, Sep 25 2014 *)
-
A000330(n):=binomial(n+2,3)+binomial(n+1,3)$
makelist(A000330(n),n,0,20); /* Martin Ettl, Nov 12 2012 */
-
{a(n) = n * (n+1) * (2*n+1) / 6};
-
upto(n) = [x*(x+1)*(2*x+1)/6 | x<-[0..n]] \\ Cino Hilliard, Jun 18 2007, edited by M. F. Hasler, Jan 02 2024
-
a=lambda n: (n*(n+1)*(2*n+1))//6 # Indranil Ghosh, Jan 04 2017
-
[n*(n+1)*(2*n+1)/6 for n in (0..30)] # G. C. Greubel, Dec 31 2019
A000340
a(0)=1, a(n) = 3*a(n-1) + n + 1.
Original entry on oeis.org
1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0
G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 18.
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 7.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 389
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. Mentions this sequence. See also Proc. Amer. Math. Soc. 148 (2020), 461-469.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Equals
A156920 second right hand column.
Equals
A142963 second right hand column divided by 2^n.
Equals
A156919 second right hand column divided by 2.
(End)
-
[(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)
A156925
FP2 polynomials related to the generating functions of the left hand columns of the A156920 triangle.
Original entry on oeis.org
1, 1, 1, 1, 8, -11, -6, 1, 38, -108, -242, 839, -444, -180, 1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240, 1, 487, 720, -130472, 1277794, -4193514, -6504496
Offset: 0
The first few rows of the "triangle" of the coefficients of the FP2 polynomials.
In the columns the coefficients of the powers of z^m, m=0,1,2,..., appear.
[1]
[1, 1]
[1, 8, -11, -6]
[1, 38, -108, -242, 839, -444, -180]
[1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240]
Matrix of the coefficients of the FP2 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,...
[1, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0]
[1, 8 , -11, -6, 0, 0, 0]
[1, 38, -108, -242, 839, -444, -180]
The first few FP2 polynomials are:
FP2(z; LHCnr = 1) = 1
FP2(z; LHCnr = 2) = (1+z)
FP2(z; LHCnr = 3) = 1+8*z-11*z^2-6*z^3
Some GF2(z;LHCnr) are:
GF2(z; LHCnr = 3) = (1+8*z-11*z^2-6*z^3)/((1-z)^3*(1-2*z)^2*(1-3*z))
GF2(z; LHCnr = 4) = (1+38*z-108*z^2-242*z^3+839*z^4-444*z^5-180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z))
The number of FP2 terms follow the 'Lazy Caterer's sequence'
A000124.
For the polynomials in the denominators of the GF2(z;LHCnr) see
A157703.
-
LHCnr:=5; LHCmax:=(LHCnr)*(LHCnr-1)/2: RHCend:=LHCnr+LHCmax: for k from LHCnr to RHCend do for n from 0 to k do S2[k,n]:=sum((-1)^(n+i)*binomial(n,i)*i^k/n!,i=0..n) end do: G(k,x):= sum(S2[k,p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1),p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k,x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx,x,n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..RHCend); for nx from 0 to LHCmax do num:=sort(sum(A[t]*z^t,t=0..LHCmax)): nom:=product((1-u*z)^(LHCnr-u+1),u=1..LHCnr); LHCb:=series(num/nom,z,nx+1); y:=coeff(LHCb,z,nx)-A[nx]; x:=LHC[LHCnr+nx]; A[nx]:=x-y; end do: FP2[LHCnr]:=sort(num,z, ascending); GenFun[LHCnr]:= FP2[LHCnr]/ product((1-m*z)^(LHCnr-m+1), m=1..LHCnr);
Showing 1-10 of 14 results.
Comments