cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Sergio Falcon

Sergio Falcon's wiki page.

Sergio Falcon has authored 11 sequences. Here are the ten most recent ones:

A336890 Numbers that eventually reach the fixed point 8208 under "x --> sum of the fourth powers of digits of x".

Original entry on oeis.org

12, 17, 21, 46, 64, 71, 102, 107, 120, 137, 145, 154, 170, 173, 201, 210, 224, 242, 279, 288, 297, 317, 349, 357, 371, 375, 379, 394, 397, 406, 415, 422, 439, 451, 460, 493, 514, 537, 541, 573, 599, 604, 640, 701, 710, 713, 729, 731, 735, 739, 753, 792, 793, 828, 882, 927, 934, 937, 943, 959, 972, 973, 995
Offset: 1

Author

Sergio Falcon, Aug 07 2020

Keywords

Examples

			12 --> 1^4+2^4 = 17 --> 1^4+7^4 = 2402 --> 2^4+4^4+0^4+2^4 = 288 --> 2^4+8^4+8^4 = 8208.
		

Crossrefs

Programs

  • Maple
    V:= Vector(32805): V[8208]:= true:
    g:= proc(n) local L, t;
      add(t^4, t = convert(n,base,10))
    end proc:
    f:= proc(n) local x,S; global V;
      if n <= 32805 then
         if V[n] <> 0 then return V[n]
         else S:= [n]
         fi
      else S:= []
      fi;
      x:= n;
      do
        x:= g(x);
        if V[x] <> 0 then
           V[S]:= V[x];
           return V[x]
        elif member(x,S) then
           V[S]:= false;
           return false
        fi;
        if x <= 32805 then S:= [op(S), x] fi;
      od;
    end proc;
    select(f, [$1..10000]); # Robert Israel, Sep 03 2020
  • Mathematica
    okQ[n] := MemberQ[NestList[Total[IntegerDigits[#]^4]&, n, 30], 8208]; Select[Range[1000], okQ]

A282756 Let F(k,n) = k*F(k,n-1) + F(k,n-2) with initial conditions F(k,0) = 0, F(k,1) = 1. Sequence lists the minimum 'n' such that F(k,n) > k^n.

Original entry on oeis.org

3, 6, 14, 27, 45, 70, 101, 139, 184, 236, 296, 364, 440, 524, 616, 716, 826, 943, 1070, 1205, 1350, 1503, 1666, 1838, 2019, 2210, 2410, 2620, 2839, 3069, 3308, 3557, 3815, 4084, 4363, 4652, 4951, 5261, 5580, 5910, 6251, 6601, 6963, 7334, 7717, 8110, 8513, 8928, 9353, 9788
Offset: 1

Author

Sergio Falcon, Feb 21 2017

Keywords

Examples

			F(1,3) = 2 > 1^1;
F(2,6) = 70 > 2^6 = 64;
F(3,14) = 5097243 > 3^14 = 4782969;
...
		

Crossrefs

Programs

  • Mathematica
    f[k_, n_] := Fibonacci[n, k]
    Do[Do[If[f[k, n] > k^n, {Print[{k, n}], Break[]}], {n, 0, 10000}], {k, 50}]

A238391 Expansion of (1+x)/(1-x^2-3*x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 7, 7, 10, 19, 22, 40, 43, 70, 100, 136, 220, 265, 430, 565, 838, 1225, 1633, 2515, 3328, 5029, 7003, 9928, 14548, 19912, 29635, 40921, 59419, 84565, 119155, 173470, 241918, 351727, 495613, 709192, 1016023, 1434946, 2071204, 2921785, 4198780, 5969854, 8503618, 12183466, 17268973, 24779806
Offset: 0

Author

Sergio Falcon, Feb 26 2014

Keywords

Examples

			a(5) = 3*a(0)+a(3)=4; a(6) = 3*a(1)+a(4)=4; a(7) = 3*a(2)+a(5)=7.
		

Programs

  • Mathematica
    For[j = 0, j < 5, j++, a[j] = 1]; For[j = 5, j < 51, j++, a[j] = 3 a[j - 5] + a[j - 2]]; Table[a[j], {j, 0, 50}]
    CoefficientList[Series[(1 + x)/(1 - x^2 - 3 x^5), {x, 0, 50}], x] (* Michael De Vlieger, Jan 27 2016 *)
  • PARI
    Vec((1+x)/(1-x^2-3*x^5) + O(x^50)) \\ Michel Marcus, Jan 27 2016

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1; a(n) = 3*a(n-5)+a(n-2) for n>4.
a(2n) = Sum_{j=0..n/5} binomial(n-3j,2j)*3^(2j) + Sum_{j=0..(n-3)/5} binomial(n-2-3j,2j+1)*3^(2j+1).
a(2n+1) = Sum_{j=0..n/5} binomial(n-3j,2j)*3^{2j} + Sum_{j=0..(n-2)/5} binomial(n-1-3j,2j+1)*3^(2j+1).

A237714 Expansion of (1 + x)/(1 - x^2 - 2*x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 11, 13, 21, 23, 35, 45, 61, 87, 107, 157, 197, 279, 371, 493, 685, 887, 1243, 1629, 2229, 2999, 4003, 5485, 7261, 9943, 13259, 17949, 24229, 32471, 44115, 58989, 80013, 107447, 144955, 195677, 262933, 355703, 477827, 645613, 869181, 1171479, 1580587
Offset: 0

Author

Sergio Falcon, Feb 12 2014

Keywords

Crossrefs

Programs

  • Mathematica
    For[j = 0, j < 5, j++, a[j] = 1]
    For[j = 5, j < 51, j++, a[j] = 2 a[j - 5] + a[j - 2]]
    Table[a[j], {j, 0, 50}]
    CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    LinearRecurrence[{0,1,0,0,2},{1,1,1,1,1},70] (* Harvey P. Dale, Nov 24 2024 *)
  • PARI
    Vec( (1 + x)/(1 - x^2 - 2*x^5) + O(x^66) ) \\ Joerg Arndt, Feb 24 2014

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(n) = 2*a(n-5) + a(n-2) for n>=5.
a(2n) = sum_{j=0}^{n/5}C(n-3j,2j)*2^(2j)+sum_{j=0}^{(n-3)/5} C(n-2-3j,2j+1)*2^(2j+1).
a(2n+1) = sum_{j=0}^{n/5}C(n-3j,2j)*2^(2j)+sum_{j=0}^{(n-2)/5} C(n-1-3j,2j+1)*2^(2j+1).

A238389 Expansion of (1+x)/(1-x^2-3*x^3).

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 16, 19, 37, 67, 94, 178, 295, 460, 829, 1345, 2209, 3832, 6244, 10459, 17740, 29191, 49117, 82411, 136690, 229762, 383923, 639832, 1073209, 1791601, 2992705, 5011228, 8367508, 13989343, 23401192, 39091867, 65369221, 109295443
Offset: 0

Author

Sergio Falcon, Feb 26 2014

Keywords

Examples

			a(3) = 3*a(0)+a(1) = 4; a(4) = 3*a(1)+a(2) = 4; a(5) = 3*a(2)+a(3) = 7.
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else Self(n-2) +3*Self(n-3): n in [1..41]]; // G. C. Greubel, May 09 2021
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <3|1|0>>^n.<<(1$3)>>)[(1$2)]:
    seq(a(n), n=0..44);  # Alois P. Heinz, May 09 2021
  • Mathematica
    (* First program *)
    For[j=0, j<3, j++, a[j] = 1]
    For[j=3, j<51, j++, a[j] = 3a[j-3] + a[j-2]]
    Table[a[j], {j, 0, 50}]
    (* Second program *)
    CoefficientList[Series[(1+x)/(1-x^2-3x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    LinearRecurrence[{0,1,3},{1,1,1},40] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    Vec((1+x)/(1-x^2-3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014
    
  • Sage
    def A238389_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/(1-x^2-3*x^3) ).list()
    A238389_list(40) # G. C. Greubel, May 09 2021

Formula

a(0)=1, a(1)=1, a(2)=1; for n>2, a(n) = a(n-2) + 3*a(n-3).
a(2n) = Sum_{j=0}^{n/3} binomial(n-j,2j)*3^(2j) + Sum_{j=0}^{(n-2)/3} binomial(n-1-j,2j+1)*3^(2j+1).
a(2n+1) = Sum_{j=0}^{n/3} binomial(n-j,2j)*3^(2j) + Sum_{j=0}^{(n-1)/3} binomial(n-j,2j+1)*3^(2j+1).
a(n) = |A106855(n)| + |A106855(n-1)| . - R. J. Mathar, Mar 13 2014

Extensions

Terms corrected by Charles R Greathouse IV, Mar 06 2014

A237718 9-distance Pell numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 15, 17, 25, 27, 39, 41, 57, 59, 79, 89, 113, 139, 167, 217, 249, 331, 367, 489, 545, 715, 823, 1049, 1257, 1547, 1919, 2281, 2897, 3371, 4327, 5017, 6425, 7531, 9519
Offset: 0

Author

Sergio Falcon, Feb 12 2014

Keywords

Examples

			a(9)=2a(0)+a(7)=3; a(10)=2a(1)+a(8)=3; a(11)=2a(2)+a(9)=5.
		

Programs

  • Mathematica
    For[j = 0, j < 9, j++, a[j] = 1]
    For[j = 9, j < 51, j++, a[j] = 2 a[j - 9] + a[j - 2]]
    Table[a[j], {j, 0, 50}]
    CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^9), {x,0,50}], x] (* G. C. Greubel, May 01 2017 *)
  • PARI
    Vec((1+x)/(1-x^2-2*x^9)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=1, a(8)=1; a(n) = 2*a(n-9) + a(n-2) for n>=9.
G.f. (1+x)/(1-x^2-2x^9).
a(2*n) = Sum_{j=0..n/9} Binomial[n-7j, 2j]*2^{2j} + Sum_{j=0..(n-5)/9} Binomial[n-4-7j, 2j+1]*2^{2j+1}.
a(2*n+1) = Sum_{j=0..n/9} Binomial[n-7j, 2j]*2^{2j} + Sum_{j=0..(n-4)/9} Binomial[n-3-7j, 2j+1]*2^{2j+1}.

A237716 7-distance Pell sequence.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 13, 15, 23, 25, 37, 39, 55, 65, 85, 111, 135, 185, 213, 295, 343, 465, 565, 735, 935, 1161, 1525, 1847, 2455, 2977, 3925, 4847, 6247, 7897, 9941, 12807, 15895, 20657, 25589, 33151, 41383, 53033, 66997
Offset: 0

Author

Sergio Falcon, Feb 12 2014

Keywords

Examples

			a(7)=2a(0)+a(5)=3; a(8)=2a(1)+a(6)=3; a(9)=2a(2)+a(7)=5.
		

Crossrefs

Programs

  • Mathematica
    For[j = 0, j < 7, j++, a[j] = 1]
    For[j = 7, j < 51, j++, a[j] = 2 a[j - 7] + a[j - 2]]
    Table[a[j], {j, 0, 50}]
    CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^7), {x,0,50}], x] (* G. C. Greubel, May 01 2017 *)
  • PARI
    Vec((1+x)/(1-x^2-2*x^7)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014

Formula

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1; a(n) = 2*a(n-7) + a(n-2) for n>=7.
G.f.: (1 + x)/(1 - x^2 - 2*x^7).
a(2*n) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-4)/7} binomial(n-3-5*j, 2*j+1)*2^(2*j+1).
a(2*n+1) = Sum_{j=0..n/7} binomial(n-5*j, 2*j)*2^(2*j) + Sum_{j=0..(n-3)/7} binomial(n-2-5*j, 2*j+1)*2^(2*j+1).

A143646 Catalan transform of the 3-Fibonacci sequence A006190.

Original entry on oeis.org

0, 1, 4, 18, 83, 387, 1815, 8541, 40276, 190182, 898844, 4250780, 20111394, 95181166, 450565602, 2133227418, 10101126723, 47834649675, 226540406571, 1072931019393, 5081776592061, 24069823974879, 114009427284309
Offset: 0

Author

Sergio Falcon, Oct 27 2008

Keywords

Crossrefs

Programs

  • Sage
    q=50 #change q for more terms
    [0]+[sum((k/n)*binomial(2*n-k-1,n-k)*lucas_number1(k,3,-1) for k in [0..n]) for n in [1..q]] # Tom Edgar, Mar 09 2014

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*A006130(k-1) with A006130(-1) = 0. - Philippe Deléham, Nov 01 2008
For n>0, a(n) = sum_{k=0..n} (k/n)*C(2n-k-1,n-k)*A006190(k). - Tom Edgar, Mar 09 2014

A143464 Catalan transform of the Pell sequence.

Original entry on oeis.org

0, 1, 3, 11, 42, 164, 649, 2591, 10408, 41998, 170050, 690370, 2808714, 11446642, 46715469, 190876527, 780679200, 3195628806, 13090353594, 53655587034, 220045073988, 902842397664, 3705876933930, 15216954519222, 62503485455208
Offset: 0

Author

Sergio Falcon, Oct 24 2008

Keywords

Programs

  • Mathematica
    a[n_]:= a[n]= If[n==0, 0, Sum[i*Binomial[2n-i,n-i]*Fibonacci[i,2]/(2n-i), {i,n}]];
    Table[a[n], {n,0,30}] (* modified by G. C. Greubel, May 31 2022 *)
  • PARI
    my(x='x+O('x^66)); concat([0],Vec((1-5*x-(1+x)*sqrt(1-4*x))/(2*x^2+16*x-4))) \\ Joerg Arndt, May 01 2013
    
  • SageMath
    def Pell(n): return round( ((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2)) )
    [0]+[(1/n)*sum(k*binomial(2*n-k-1, n-1)*Pell(k) for k in (1..n)) for n in (1..30)] # G. C. Greubel, May 31 2022

Formula

a(n) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n)*Pell(j), with a(0) = 0.
From Philippe Deléham, Oct 28 2008: (Start)
a(n) = Sum_{k=0..n} A106566(n,k)*A000129(k).
a(n) = Sum_{k=0..n} A039599(n,k)*A000035(k)*A016116(k). (End)
G.f.: ((1+x)*sqrt(1-4*x) - (1-5*x))/(2*(2 - 8*x - x^2)). - Mark van Hoeij, May 01 2013
a(n) = (1/(2*sqrt(2)))*Catalan(n-1)*Sum_{j=0..1} ((-1)^j + sqrt(2)) * Hypergeometric2F1([2,1-n], [2*(1-n)], 1+(-1)^j*sqrt(2)) - [n=0]/2. - G. C. Greubel, May 31 2022
a(n) ~ (1 + sqrt(2))^(2*n - 1) / 2^(2 + n/2). - Vaclav Kotesovec, May 31 2022

Extensions

Offset corrected by Philippe Deléham, Oct 28 2008

A139798 Coefficient of x^5 in (1-x-x^2)^(-n).

Original entry on oeis.org

8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542
Offset: 1

Author

Sergio Falcon, May 22 2008

Keywords

Comments

The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - R. J. Mathar, May 23 2008

References

  • Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Crossrefs

Programs

  • Mathematica
    a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{8,38,111,256,511,924},40] (* Harvey P. Dale, Oct 13 2015 *)
  • PARI
    a(n)=binomial(n+2,3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011

Formula

a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008

Extensions

More terms from R. J. Mathar, May 23 2008