cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 519 results. Next

A060058 Triangle of numbers related to A000330 (sum of squares) and A000364 (Euler numbers).

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 1, 14, 61, 61, 1, 30, 331, 1385, 1385, 1, 55, 1211, 12284, 50521, 50521, 1, 91, 3486, 68060, 663061, 2702765, 2702765, 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981, 1, 204, 18522, 948002, 28862471, 510964090, 4798037791, 19391512145, 19391512145
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2001

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1,   1;
  [2] 1,   5,    5;
  [3] 1,  14,   61,     61;
  [4] 1,  30,  331,   1385,    1385;
  [5] 1,  55, 1211,  12284,   50521,    50521;
  [6] 1,  91, 3486,  68060,  663061,  2702765,   2702765;
  [7] 1, 140, 8526, 281210, 5162421, 49164554, 199360981, 199360981;
  ...
		

Crossrefs

Cf. A060059 (row sums), A000364 (main diagonal Euler numbers).
Columns: A000012 (powers of 1), A000330 (sum of squares), A060060-2 for m=0,...,4.
See triangle A060074.

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1)^2 * T(n, k - 1) + T(n - 1, k) fi fi end:
    seq(print(seq(T(n, k), k=0..n)), n=0..7);  # Peter Luschny, Sep 30 2023
  • Mathematica
    a[, -1] = 0; a[0, 0] = 1; a[n, m_] /; n < m = 0; a[n_, m_] := a[n, m] = a[n-1, m] + (n+1-m)^2*a[n, m-1]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *)

Formula

a(n, m) = a(n-1, m) + ((n+1-m)^2)*a(n, m-1), a(n, -1) := 0, a(0, 0) = 1, a(n, m) = 0 if n < m.
a(n, m) = ay(n-m+1, m) if n >= m >= 0, with the rectangular array ay(n, m) := Sum_{j=1..n} (j^2)*ay(j+1, m-1), n >= 0, m >= 1; input: ay(n, 0)=1 (iterated sums of squares).
G.f. for m-th column: 1/(1-x) for m=0, (x^m)*(Sum_{k=0..m} A060063(m, k)*x^k)/(1-x)^(3*m+1), m >= 1.
Recursion for g.f.s for m-th column: (1-x)*G(m, x) = x*G''(m-1, x) - G'(m-1, x) + G(m-1, x)/x, m >= 2; G(1, x) = x*(1+x)/(1-x)^4; the apostrophe denotes differentiation w.r.t. x. G(0, x) = 1/(1-x). - Wolfdieter Lang, Feb 13 2004

A053721 Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives k values.

Original entry on oeis.org

42, 24, 50, 126, 124, 212, 136, 189, 304, 439, 461, 145, 375, 399, 219, 742, 417, 742, 1239, 1100, 1058, 1474, 1569, 434, 1126, 2669, 3076, 580, 2650, 3170, 3531, 3921, 3647, 4525, 3484, 963, 3317, 5596, 5559, 3503, 6969, 1205, 6083, 5323, 6962, 4088
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 11 2000

Keywords

Comments

i values are A053719 and j values are A053720.

Examples

			Py(55) = 56980 = Py(45) + Py(42); Py(70) = 116795 = Py(69) + Py(24);
		

Crossrefs

Extensions

Crossrefs in comments corrected by Jean-François Alcover, Oct 17 2012

A069074 a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).

Original entry on oeis.org

24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

sqrt((Sum_{k=0..n} 2*a(k)) + 1) = A056220(n+2). - Doug Bell, Mar 09 2009
Second leg of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + a(n-1)^2 = A007204(n)^2. - Martin Renner, Nov 12 2011
Numbers which are both the sum of 2*n + 4 consecutive odd integers and the sum of the 2*n + 2 immediately higher consecutive odd integers. In general, let f(k,n) = 3*k^3*A000330(n). Then f(k,n) is both the sum of k*n + k consecutive terms from the arithmetic progression with first term A000217(k) and constant difference k and the immediately higher k*n terms from the same progression. When k = 1, f(k,n) = A059270(n). - Charlie Marion, Aug 23 2021

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
  • Jolley, Summation of Series, Dover (1961).
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269

Crossrefs

Cf. A001844. A001844(n+1)^2 - a(n) and A001844(n+1)^2 + a(n) are both square numbers. - Doug Bell, Mar 08 2009
Cf. A000466. a(n) = Sum_{k=0..2n+3} (A000466(n+1) + 2k) which is the sum of 2n+4 consecutive odd integers starting at A000466(n+1). - Doug Bell, Mar 08 2009

Programs

Formula

Sum_{n>=0} (-1)^n/a(n) = (Pi-3)/4 = 0.03539816339... [Jolley, eq. 244]
Sum_{n>=0} 1/a(n) = 3/4 - log(2) = 0.05685281... [Jolley, eq. 249]
G.f.: ( 24+24*x ) / (x-1)^4. - R. J. Mathar, Oct 03 2011

A322340 Number of compositions (ordered partitions) of n into square pyramidal numbers (A000330).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 114, 153, 205, 274, 365, 487, 651, 871, 1165, 1557, 2080, 2780, 3716, 4967, 6639, 8873, 11860, 15853, 21189, 28320, 37850, 50589, 67618, 90379, 120799, 161456, 215797, 288430, 385512, 515269, 688699
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(t+1)*(2*t+1)/6>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i*(i+1)*(2*i+1)/6), i=1..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 49; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(2*k+1)/6)).

A051538 Least common multiple of {b(1),...,b(n)}, where b(k) = k(k+1)(2k+1)/6 = A000330(k).

Original entry on oeis.org

1, 5, 70, 210, 2310, 30030, 60060, 1021020, 19399380, 19399380, 446185740, 2230928700, 6692786100, 194090796900, 12033629407800, 12033629407800, 12033629407800, 445244288088600, 445244288088600, 18255015811632600
Offset: 1

Views

Author

Keywords

Comments

Also a(n) = lcm(1,...,(2n+2))/12. - Paul Barry, Jun 09 2006. Proof that this is the same sequence, from Martin Fuller, May 06 2007: k, k+1, 2k+1 are coprime so their lcm is the same as their product. Hence a(n) = lcm{k, k+1, 2k+1 | k=1..n}/6. {k, k+1, 2k+1 | k=1..n} = {1..2n+2 excluding even numbers >n+1}. Adding the higher even numbers to the set doubles the LCM. Hence lcm{k, k+1, 2k+1 | k=1..n}/6 = lcm{1..2n+2}/12.

Examples

			a(4) = lcm(1, 5, 14, 30) = 210.
		

Crossrefs

Second column of A120101.
Cf. A000330.
Cf. A051542 (LCM), A025555.

Programs

  • Haskell
    a051538 n = a051538_list !! (n-1)
    a051538_list = scanl1 lcm $ tail a000330_list
    -- Reinhard Zumkeller, Mar 12 2014
    
  • Magma
    [Lcm([1..2*n+2])/12: n in [1..30]]; // G. C. Greubel, May 03 2023
    
  • Mathematica
    Table[LCM@@Range[2n+2]/12,{n,30}] (* Harvey P. Dale, Apr 25 2011 *)
  • SageMath
    def A051538(n):
        return lcm(range(1,2*n+3))/12
    [A051538(n) for n in range(1,31)] # G. C. Greubel, May 03 2023

Extensions

Corrected by James Sellers
Edited by N. J. A. Sloane, May 06 2007

A252117 Irregular triangle read by row: T(n,k), n>=1, k>=1, in which column k lists the numbers of A000716 multiplied by A000330(k), and the first element of column k is in row A000217(k).

Original entry on oeis.org

1, 3, 9, 5, 22, 15, 51, 45, 108, 110, 14, 221, 255, 42, 429, 540, 126, 810, 1105, 308, 1479, 2145, 714, 30, 2640, 4050, 1512, 90, 4599, 7395, 3094, 270, 7868, 13200, 6006, 660, 13209, 22995, 11340, 1530, 21843, 39340, 20706, 3240, 55, 35581, 66045, 36960, 6630, 165, 57222, 109215, 64386, 12870, 495
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2014

Keywords

Comments

Gives an identity for sigma(n). Alternating sum of row n equals A000203(n), the sum of the divisors of n.
Row n has length A003056(n) hence column k starts in row A000217(k).
Column 1 is A000716, but here the offset is 1 not 0.
The 1st element of column k is A000330(k).
The 2nd element of column k is A059270(k).
The 3rd element of column k is A220443(k).
The partial sums of column k give the k-th column of A249120.
This triangle has been constructed after Mircea Merca's formula for A000203.
From Omar E. Pol, May 05 2022: (Start)
In the Honda-Yoda paper see "3. String theory and Riemann hypothesis". The coefficients that are mentioned in 3.11 are the first 16 terms of A000716, the coefficients that are mentioned in 3.12 are the first 5 terms of A000330, and the coefficients that are mentioned in 3.13 are the first 16 terms of A000203.
Another triangle with the same row lengths and whose alternating row sums give A000203 is A196020. (End)

Examples

			Triangle begins:
       1;
       3;
       9,      5;
      22,     15;
      51,     45;
     108,    110,     14;
     221,    255,     42;
     429,    540,    126;
     810,   1105,    308;
    1479,   2145,    714,     30;
    2640,   4050,   1512,     90;
    4599,   7395,   3094,    270;
    7868,  13200,   6006,    660;
   13209,  22995,  11340,   1530;
   21843,  39340,  20706,   3240,    55;
   35581,  66045,  36960,   6630,   165;
   57222, 109215,  64386,  12870,   495;
   90882, 177905, 110152,  24300,  1210;
  142769, 286110, 184926,  44370,  2805;
  221910, 454410, 305802,  79200,  5940;
  341649, 713845, 498134, 137970, 12155, 91;
...
For n = 6 the divisors of 6 are 1, 2, 3, 6, so the sum of the divisors of 6 is 1 + 2 + 3 + 6 = 12. On the other hand, the 6th row of the triangle is 108, 110, 14, so the alternating row sum is 108 - 110 + 14 = 12, equaling the sum of the divisors of 6.
For n = 15 the divisors of 15 are 1, 3, 5, 15, so the sum of the divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand, the 15th row of the triangle is 21843, 39340, 20706, 3240, 55, so the alternating row sum is 21843 - 39340 + 20706 - 3240 + 55 = 24, equaling the sum of the divisors of 15.
		

Crossrefs

Programs

Formula

A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k).

A363269 Positive squares (A000290) alternating with positive square pyramidal numbers (A000330).

Original entry on oeis.org

1, 1, 4, 5, 9, 14, 16, 30, 25, 55, 36, 91, 49, 140, 64, 204, 81, 285, 100, 385, 121, 506, 144, 650, 169, 819, 196, 1015, 225, 1240, 256, 1496, 289, 1785, 324, 2109, 361, 2470, 400, 2870, 441, 3311, 484, 3795, 529, 4324, 576, 4900, 625, 5525, 676, 6201, 729
Offset: 1

Views

Author

Clark Kimberling, May 24 2023

Keywords

Crossrefs

Range of terms: A363284\{0}.

Programs

  • Mathematica
    c[1] = 1; c[2] = 1;
    c[n_] := If[OddQ[n], c[n - 2] + n, c[n - 2] + c[n - 1]]
    Table[c[n], {n, 1, 120}]
  • PARI
    a(n) = if(n%2, (n+1)^2/4, n*(n+1)*(n+2)/24); \\ Kevin Ryde, Jun 10 2023

Formula

a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8).
G.f.: x*(1 + x + x^3 - x^4)/(-1 + x^2)^4.
E.g.f.: ((18*x + 6*x^2)*cosh(x) + (6 + 6*x + 6*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, Jun 10 2023
48*a(n) = (n+1) * (n^2 +(-1)^n*n^2 -4*(-1)^n*n +8*n -6*(-1)^n +6). - R. J. Mathar, Jun 22 2023

A051542 Quotients of consecutive values of LCM {b(1),...,b(n)}, b() = A000330.

Original entry on oeis.org

5, 14, 3, 11, 13, 2, 17, 19, 1, 23, 5, 3, 29, 62, 1, 1, 37, 1, 41, 43, 1, 47, 7, 1, 53, 1, 1, 59, 61, 2, 1, 67, 1, 71, 73, 1, 1, 79, 3, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 11, 1, 5, 254, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			a(3) = A051538(4)/A051538(3) = 210/70 = 3
		

Crossrefs

Programs

  • Haskell
    a051542 n = a051542_list !! (n-1)
    a051542_list = zipWith div (tail a051538_list) a051538_list
    -- Reinhard Zumkeller, Mar 12 2014

Formula

a(n) = A051538(n+1)/A051538(n)

Extensions

Corrected and extended by James Sellers
Example fixed by Reinhard Zumkeller, Mar 12 2014

A053719 Let Py(n)=A000330(n)=n-th square pyramidal number. Consider all integer triples (i,j,k), j >= k>0, with Py(i)=Py(j)+Py(k), ordered by increasing i; sequence gives i values.

Original entry on oeis.org

55, 70, 147, 226, 237, 275, 351, 409, 434, 610, 714, 717, 869, 934, 1085, 1369, 1490, 1602, 1643, 1954, 2363, 2405, 2534, 3020, 3241, 3450, 4017, 4039, 4060, 4140, 4796, 5766, 5830, 6412, 8601, 8635, 8855, 8885, 9423, 10083, 10224, 10809, 11115, 11935
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 11 2000

Keywords

Comments

j values are A053720 and k values are A053721

Examples

			Py(55) = 56980 = Py(45) + Py(42); Py(70) = 116795 = Py(69) + Py(24);
		

Crossrefs

Programs

  • Mathematica
    r[i_, j_] := Reduce[ j >= k > 0 && (2i + 1)*(i + 1)*i == (2j + 1)*(j + 1)*j + (2k + 1)*(k + 1)*k, k, Integers]; ijk = Reap[ Do[ If[ r[i, j] =!= False, sol = {i, j, k} /. ToRules[r[i, j]]; Print[sol]; Sow[sol]], {i, 1, 12000}, {j, Floor[4i/5], i-1}]][[2, 1]]; A053719 = ijk[[All, 1]]; A053720 = ijk[[All, 2]]; A053721 = ijk[[All, 3]]; (* Jean-François Alcover, Oct 17 2012 *)

Extensions

Crossrefs in comments corrected by Jean-François Alcover, Oct 17 2012

A093534 Square pyramorphic numbers: integers m such that the sum of the first m squares (A000330) ends in m.

Original entry on oeis.org

0, 1, 5, 25, 40, 65, 80, 160, 225, 385, 400, 560, 625, 785, 800, 960, 1185, 2560, 2625, 4000, 5185, 6560, 6625, 8000, 9185, 9376, 10625, 26560, 37185, 40000, 50625, 66560, 77185, 80000, 90625, 226560, 317185, 400000, 490625, 626560, 717185, 800000
Offset: 1

Views

Author

Lekraj Beedassy, May 14 2004

Keywords

Comments

From Robert Dawson, Apr 04 2018: (Start)
This sequence is the union of the following twelve subsequences.
Terms in have fewer than d digits: they are pyramorphic, and always appear elsewhere, as an earlier term in the same sequence or in a related sequence. Dashes replace solutions to the congruences for which the inequalities, or other conditions proving pyramorphicity, are not satisfied; these are not part of the subsequences.
(i) a(d) := 4 * 10^(d-1) for d >= 2:
(-, 40,400,4000,40000,400000,...)
(ii) 2a(d) for d >= 2:
(-, 80,800,8000,80000,800000,...)
(iii) b(d) such that 2^(d+1)|b(d), 5^d|b(d)-1, b(d) < 10^d:
(-,-,-,9376,-,-,7109376,-,...)
(iv) c(d) such that 2^(d+1)|c(d), 5^(d-1)|2c(d)+5, c(d) < 4*10^(d-1):
(0,<0>,160,2560,26560,226560,<226560>,12226560,...)
(v) c(d) + a(d) for d >= 2:
(-,40,560,6560,66560,626560,42265609,41226560,...)
(vi) c(d) + 2a(d) for d >= 2, when this is less than 10^d:
(-, 80,960,-,-,-,8226560,81226560,...)
(vii) c'(d) such that 2^(d+1)|c'(d)-1, 5^(d-1)|2c'(d)+5, c'(d) < 4*10^(d-1):
(1,25,385,1185,37185,317185,1117185,25117185,...)
(viii)c'(d) + a(d) for d >= 2:
(-,65,785,5185,77185,717185,5117185,65117185,...)
(ix) c'(d) + 2a(d) for d >= 2, when this is less than 10^d:
(-,-,-,9185,-,-,9117185,-,...)
(x) c"(d) such that 2^(d+1)|c"(d)-1, 5^(d-1)|c"(d), c"(d) < 4*10^(d-1):
(5,25,225,2625,10625,<90625>,<890625>,12890625,...)
(xi) c"(d) + a(d) for d >= 2:
(-,65,625,6625,50625,490625,4890625,52890626,...)
(xii) c"(d) + 2a(d) for d >= 2, when this is less than 10^d:
(-,-,-,-,90625,890625,8890625,92890625,...)
For d >= 3 the d-th terms of these sequences are always distinct.
For d > 3 there are at least eight and at most eleven square pyramorphic numbers with d digits (not including leading zeros). The minimum is first achieved for d=6; the maximum is first achieved for d=49.
(End)

References

  • C. A. Pickover, Wonders of Numbers, Chap. 65, Oxford Univ. Press NY 2000; pp. 158-160.

Crossrefs

A060204 gives the corresponding sums of squares. Cf. A000330.

Programs

  • Mathematica
    l = {0}; s = 0; Do[s = s + n^2; If[ Mod[s, 10^Floor[ Log[10, n] + 1]] == n, AppendTo[l, n]], {n, 10^6}]; l (* Robert G. Wilson v, May 24 2004 *)
  • PARI
    isok(n) = frac((n*(n+1)*(2*n+1)/6 - n)/10^#Str(n)) == 0; \\ Michel Marcus, Aug 01 2018

Extensions

More terms from Robert G. Wilson v, May 24 2004
Term corrected (6025 -> 6625) by Robert Dawson, Jul 31 2018
0 inserted by David A. Corneth, Aug 02 2018
Showing 1-10 of 519 results. Next