cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Charlie Marion

Charlie Marion's wiki page.

Charlie Marion has authored 59 sequences. Here are the ten most recent ones:

A201004 Triangular numbers, T(m), that are five-quarters of another triangular number; T(m) such that 4*T(m) = 5*T(k) for some k.

Original entry on oeis.org

0, 45, 14535, 4680270, 1507032450, 485259768675, 156252138480945, 50312703331095660, 16200534220474321620, 5216521706289400466025, 1679703788890966475738475, 540859403501184915787322970, 174155048223592651917042257910, 56077384668593332732371819724095
Offset: 0

Author

Charlie Marion, Feb 15 2012

Keywords

Examples

			4*0 = 5*0.
4*45 = 5*36.
4*14535 = 5*11628.
4*4680270 = 5*3744216.
		

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(45*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{323, -323, 1}, {0, 45, 14535}, 20] (* T. D. Noe, Feb 15 2012 *)
    CoefficientList[Series[-45 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
  • PARI
    concat(0, Vec(45*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
    

Formula

For n > 1, a(n) = 322*a(n-1) - a(n-2) + 45. See A200994 for generalization.
G.f.: 45*x / ((1-x)*(x^2-322*x+1)). - R. J. Mathar, Aug 10 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-18 + (9-4*sqrt(5))*(161+72*sqrt(5))^(-n) + (9+4*sqrt(5))*(161+72*sqrt(5))^n)/128.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 45*A298271(n). - Amiram Eldar, Dec 01 2024

Extensions

a(7) corrected by R. J. Mathar, Aug 10 2014

A200999 Triangular numbers, T(m), that are four-thirds of another triangular number; T(m) such that 3*T(m) = 4*T(k) for some k.

Original entry on oeis.org

0, 28, 5460, 1059240, 205487128, 39863443620, 7733302575180, 1500220836141328, 291035108908842480, 56459310907479299820, 10952815280942075322628, 2124789705191855133290040, 412198249991938953782945160, 79964335708730965178758071028
Offset: 0

Author

Charlie Marion, Feb 15 2012

Keywords

Comments

Numbers h such that 6*h+1 and 8*h+1 are both squares. [Bruno Berselli, Jul 07 2014]

Examples

			3*0 = 4*0.
3*28 = 4*21.
3*5640 = 4*4095.
3*1059240 = 4*794430.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{195, -195, 1}, {0, 28, 5460}, 20] (* T. D. Noe, Feb 15 2012 *)
  • PARI
    concat(0, Vec(28*x/((1-x)*(1-194*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016

Formula

For n>1, a(n) = 194*a(n-1) - a (n-2) + 28. See A200998 for generalization.
From Colin Barker, Mar 02 2016: (Start)
a(n) = ((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(-7+4*sqrt(3)+(7+4*sqrt(3))*(97+56*sqrt(3))^n))/96.
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>2.
G.f.: 28*x / ((1-x)*(1-194*x+x^2)).
(End)

A200994 Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.

Original entry on oeis.org

0, 15, 1485, 145530, 14260470, 1397380545, 136929032955, 13417647849060, 1314792560174940, 128836253249295075, 12624638025870742425, 1237085690282083462590, 121221773009618308591410, 11878496669252312158495605, 1163971451813716973223977895
Offset: 0

Author

Charlie Marion, Feb 15 2012

Keywords

Comments

For n > 1, a(n) = 98*a(n-1) - a(n-2) + 15. In general, for m>0, let b(n) be those triangular numbers such that for some triangular number c(n), (m+1)*b(n) = m*c(n). Then b(0) = 0, b(1) = A014105(m) and for n > 1, b(n) = 2*A069129(m+1)*b(n-1) - b(n-2) + A014105(m). Further, c(0) = 0, c(1) = A000384(m+1) and for n>1, c(n) = 2*A069129(m+1)*c(n-1) - c(n-2) + A000384(m+1).

Examples

			2*0 = 3*0.
2*15 = 3*10.
2*1485 = 3*990.
2*145530 = 3*97020.
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* T. D. Noe, Feb 15 2012 *)
  • PARI
    concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
    

Formula

From Colin Barker, Mar 02 2016: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
G.f.: 15*x / ((1-x)*(1-98*x+x^2)). (End)
a(n) = (-10+(5-2*sqrt(6))*(49+20*sqrt(6))^(-n)+(5+2*sqrt(6))*(49+20*sqrt(6))^n)/64. - Colin Barker, Mar 03 2016

A201008 Triangular numbers, T(m), that are five-sixths of another triangular number: T(m) such that 6*T(m)=5*T(k) for some k.

Original entry on oeis.org

0, 55, 26565, 12804330, 6171660550, 2974727580825, 1433812522297155, 691094661019647940, 333106192798948009980, 160556493834431921162475, 77387896922003387052303025, 37300805759911798127288895630
Offset: 0

Author

Charlie Marion, Dec 20 2011

Keywords

Examples

			6*0 = 5*0;
6*55 = 5*66;
6*26565 = 5*31878;
6*12804330 = 5*15365196.
		

Programs

  • Magma
    I:=[0, 55, 26565]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 22 2011
    
  • Mathematica
    LinearRecurrence[{483,-483,1},{0,55,26565},30] (* Vincenzo Librandi, Dec 22 2011 *)
  • Maxima
    makelist(expand(((11-2*sqrt(30))^(2*n+1)+(11+2*sqrt(30))^(2*n+1)-22)/192), n, 0, 11); /* Bruno Berselli, Dec 21 2011 */
    
  • PARI
    concat(0,Vec(55/(1-x)/(1-482*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 23 2011

Formula

For n > 1, a(n) = 482*a(n-1) - a(n-2) + 55. See A200993 for generalization.
From Bruno Berselli, Dec 21 2011: (Start)
G.f.: 55*x/((1-x)*(1-482*x+x^2)).
a(n) = a(-n-1) = 483*a(n-1)-483*a(n-2)+a(n-3).
a(n) = ((11-2*r)^(2*n+1)+(11+2*r)^(2*n+1)-22)/192, where r=sqrt(30). (End)

Extensions

a(11) corrected by Bruno Berselli, Dec 21 2011
a(6) corrected by Vincenzo Librandi, Dec 22 2011

A200998 Triangular numbers, T(m), that are three-quarters of another triangular number: T(m) such that 4*T(m)=3*T(k) for some k.

Original entry on oeis.org

0, 21, 4095, 794430, 154115346, 29897582715, 5799976931385, 1125165627105996, 218276331681631860, 42344483180609474865, 8214611460706556491971, 1593592278893891349967530, 309148687493954215337208870, 59973251781548223884068553271
Offset: 0

Author

Charlie Marion, Dec 20 2011

Keywords

Comments

For n>1, a(n) = 194*a(n-1) - a (n-2) + 21. See A200993 for generalization.

Examples

			4*0 = 3*0.
4*21 = 3*28.
4*4095 = 3*5640.
4*794430 = 3*1059240.
		

Programs

  • Magma
    I:=[0,21]; [n le 2 select I[n] else  194*Self(n-1) - Self(n-2) + 21: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
  • Mathematica
    LinearRecurrence[{195, -195, 1}, {0, 21, 4095}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
  • PARI
    concat(0, Vec(21/(1 - 195*x + 195*x^2 - x^3) + O(x^99))) \\ Charles R Greathouse IV, Dec 20 2011
    

Formula

G.f.: (21*x)/(1 - 195*x + 195*x^2 - x^3).
From Colin Barker, Mar 02 2016: (Start)
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>2.
a(n) = ((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(-7+4*sqrt(3)+(7+4*sqrt(3))*(97+56*sqrt(3))^n))/128.
(End)

A201003 Triangular numbers, T(m), that are four-fifths of another triangular number: T(m) such that 5*T(m) = 4*T(k) for some k.

Original entry on oeis.org

0, 36, 11628, 3744216, 1205625960, 388207814940, 125001710784756, 40250162664876528, 12960427376379457296, 4173217365031520372820, 1343763031112773180590780, 432687522800947932629858376, 139324038578874121533633806328, 44861907734874666185897455779276
Offset: 0

Author

Charlie Marion, Dec 20 2011

Keywords

Comments

Also, numbers m such that 8*m+1 and 10*m+1 are squares. Example: 8*1205625960+1 = 98209^2 and 12056259601 = 109801^2. - Bruno Berselli, Mar 03 2016

Examples

			5*0 = 4*0;
5*36 = 4*45;
5*11628 = 4*14535;
5*3744216 = 4*4680270.
		

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(36*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    triNums = Table[(n^2 + n)/2, {n, 0, 4999}]; Select[triNums, MemberQ[triNums, (5/4)#] &] (* Alonso del Arte, Dec 20 2011 *)
    CoefficientList[Series[-36 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
    LinearRecurrence[{323,-323,1},{0,36,11628},20] (* Harvey P. Dale, Dec 21 2015 *)
  • PARI
    concat(0, Vec(36*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
    

Formula

For n>1, a(n) = 322*a(n-1) - a(n-2) + 36. See A200993 for generalization.
G.f.: 36*x / ((1-x)*(x^2-322*x+1)). - R. J. Mathar, Aug 10 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-18+(9-4*sqrt(5))*(161+72*sqrt(5))^(-n)+(9+4*sqrt(5))*(161+72*sqrt(5))^n)/160.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n>2. (End)
a(n) = 36*A298271(n). - Amiram Eldar, Dec 01 2024

A200993 Triangular numbers, T(m), that are two-thirds of another triangular number; T(m) such that 3*T(m) = 2*T(k) for some k.

Original entry on oeis.org

0, 10, 990, 97020, 9506980, 931587030, 91286021970, 8945098566040, 876528373449960, 85890835499530050, 8416425350580494950, 824723793521388975060, 80814515339745539060940, 7918997779501541438997070, 775980967875811315482651930, 76038215854050007375860892080
Offset: 0

Author

Charlie Marion, Dec 15 2011

Keywords

Comments

For n>1, a(n) = 98*a(n-1) - a (n-2) + 10. In general, for m>0, let b(n) be those triangular numbers such that for some triangular number c(n), (m+1)*b(n) = m*c(n). Then b(0) = 0, b(1)= A014105(m) and for n>1, b(n) = 2*A069129(m+1)*b(n-1) - b(n-2) + A014105(m).
Further, c(0) = 0, c(1) = A000384(m+1) and for n>1, c(n) = 2*A069129(m+1)*c(n-1) - c(n-2) + A000384(m+1).

Examples

			3*0 = 2*0.
3*10 = 2*15.
3*990 = 2*1485.
3*97020 = 2*145530.
		

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(10*x/((1-x)*(x^2-98*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{99,-99,1},{0,10,990},20] (* Harvey P. Dale, Feb 25 2018 *)
  • PARI
    concat(0, Vec(10*x/((1-x)*(1-98*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2016
    

Formula

G.f. 10*x / ((1-x)*(x^2-98*x+1)). - R. J. Mathar, Dec 20 2011
a(n) = 99*a(n-1)-99*a(n-2)+a(n-3) for n>2. - Colin Barker, Mar 02 2016
a(n) = (-10+(5-2*sqrt(6))*(49+20*sqrt(6))^(-n)+(5+2*sqrt(6))*(49+20*sqrt(6))^n)/96. - Colin Barker, Mar 07 2016

A198468 Consider triples a<=b

Original entry on oeis.org

4, 7, 11, 9, 16, 12, 22, 29, 14, 37, 17, 24, 46, 29, 56, 19, 24, 67, 22, 28, 79, 47, 92, 21, 24, 37, 54, 106, 27, 42, 121, 137, 29, 53, 78, 154, 32, 59, 87, 172, 41, 50, 191, 34, 45, 55, 72, 211, 37, 42, 79, 117, 232, 128, 254, 39, 94, 277, 42, 63, 102, 301
Offset: 1

Author

Charlie Marion, Dec 19 2011

Keywords

Comments

The definition can be generalized to define Pythagorean k-triples a<=bA198453 for more about Pythagorean k-triples.

Examples

			3*2 + 3*2 = 4*3
4*3 + 6*5 = 7*6
5*4 + 10*9 = 11*10
6*5 + 7*6 = 9*8
6*5 + 15*14 = 16*15
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134.

Crossrefs

A198467 Consider triples a<=b

Original entry on oeis.org

3, 6, 10, 7, 15, 10, 21, 28, 11, 36, 14, 22, 45, 27, 55, 15, 21, 66, 18, 25, 78, 45, 91, 15, 19, 34, 52, 105, 22, 39, 120, 136, 23, 50, 76, 153, 26, 56, 85, 171, 36, 46, 190, 27, 40, 51, 69, 210, 30, 36, 76, 115, 231, 126, 253, 31, 91, 276, 34, 58, 99, 300
Offset: 1

Author

Charlie Marion, Dec 19 2011

Keywords

Comments

The definition can be generalized to define Pythagorean k-triples a<=bA198453 for more about Pythagorean k-triples.

Examples

			3*2 + 3*2 = 4*3
4*3 + 6*5 = 7*6
5*4 + 10*9 = 11*10
6*5 + 7*6 = 9*8
6*5 + 15*14 = 16*15
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134.

Crossrefs

A198466 Consider triples a<=b

Original entry on oeis.org

3, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 28, 28
Offset: 1

Author

Charlie Marion, Dec 19 2011

Keywords

Comments

The definition can be generalized to define Pythagorean k-triples a<=bA198453 for more about Pythagorean k-triples.

Examples

			3*2 + 3*2 = 4*3
4*3 + 6*5 = 7*6
5*4 + 10*9 = 11*10
6*5 + 7*6 = 9*8
6*5 + 15*14 = 16*15
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134.

Crossrefs